cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 54 results. Next

A255927 a(n) = (3/4) * Sum_{k>=0} (3*k)^n/4^k.

Original entry on oeis.org

1, 1, 5, 33, 285, 3081, 40005, 606033, 10491885, 204343641, 4422082005, 105265315233, 2733583519485, 76902684021801, 2329889536156005, 75629701786875633, 2618654297178083085, 96336948993312237561, 3752590641305604502005, 154294551397830418471233, 6677999524135208461382685
Offset: 0

Views

Author

Karol A. Penson, Sep 03 2015

Keywords

Examples

			a(5) = 729*hypergeom([2,2,2,2,2],[1,1,1,1],1/4)/16 = 3081.
		

Crossrefs

Programs

  • Maple
    S:= series(3/(4-exp(3*x)), x, 51):
    seq(coeff(S,x,n)*n!, n=0..50); # Robert Israel, Sep 03 2015
    seq(add(combinat:-eulerian1(n,k)*4^k, k=0..n), n=0..20); # Peter Luschny, Jun 27 2019
  • Mathematica
    a[n_] := 3^(n+1)/4 HurwitzLerchPhi[1/4, -n, 0];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Sep 18 2018 *)
    Eulerian1[0, 0] = 1; Eulerian1[n_, k_] := Sum[(-1)^j (k-j+1)^n Binomial[n+1, j], {j, 0, k+1}]; Table[Sum[Eulerian1[n, k] 4^k, {k, 0, n}], {n, 0, 20}] (* Jean-François Alcover, Jul 13 2019, after Peter Luschny *)
  • PARI
    a(n) = sum(k=0, n, stirling(n,k,2)*k!*3^(n-k)); \\ Michel Marcus, Sep 03 2015

Formula

a(n) = Sum_{k>=0} Stirling2(n,k)*k!*3^(n-k).
E.g.f.: 3/(4-exp(3*x)).
Special values of the generalized hypergeometric function n_F_(n-1):
a(n) = (3^(n+1)/16) * hypergeom([2,2,..2],[1,1,..1],1/4), where the sequence in the first square bracket ("upper" parameters) has n elements all equal to 2 whereas the sequence in the second square bracket ("lower" parameters) has n-1 elements all equal to 1.
Example: a(5) = 729 * hypergeom([2,2,2,2,2],[1,1,1,1],1/4)/16 = 3081.
a(n) is the n-th moment of the discrete weight function W(x) = (3/4)*sum(k>=0, Dirac(x-3*k)/4^k), n>=1.
a(n) ~ n! * 3^(n+1) / ((log(2))^(n+1) * 2^(n+3)). - Vaclav Kotesovec, Jul 09 2018
G.f.: Sum_{j>=0} j!*x^j / Product_{k=1..j} (1 - 3*k*x). - Ilya Gutkovskiy, Apr 04 2019
a(n) = A_{4}(n) where A_{n}(x) are the Eulerian polynomials as defined in A326323. - Peter Luschny, Jun 27 2019

Extensions

a(0)=1 prepended by Alois P. Heinz, Sep 18 2018

A090351 G.f. satisfies A^3 = BINOMIAL(A^2).

Original entry on oeis.org

1, 1, 3, 15, 108, 1032, 12388, 179572, 3052986, 59555338, 1310677726, 32114051862, 866766965308, 25547102523604, 816335926158372, 28107705687291892, 1037367351120788551, 40852168787823027351, 1709792654612819858341
Offset: 0

Views

Author

Paul D. Hanna, Nov 26 2003

Keywords

Comments

In general, if A^n = BINOMIAL(A^(n-1)), then for all integer m>0 there exists an integer sequence B such that B^d = BINOMIAL(A^m) where d=gcd(m+1,n). Also, coefficients of A(k*x)^n = k-th binomial transform of coefficients in A(k*x)^(n-1) for all k>0.

Examples

			A^3 = BINOMIAL(A090352), since A090352=A^2.
		

Crossrefs

Programs

  • Magma
    m:=40;
    f:= func< n,x | Exp((&+[(&+[2^(j-1)*Factorial(j)* StirlingSecond(k,j)*x^k/k: j in [1..k]]): k in [1..n+2]])) >;
    R:=PowerSeriesRing(Rationals(), m+1);  // A090351
    Coefficients(R!( f(m,x) )); // G. C. Greubel, Jun 08 2023
    
  • Mathematica
    nmax = 18; sol = {a[0] -> 1};
    Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x]^3 - A[x/(1 - x)]^2/(1 - x) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
    sol /. Rule -> Set;
    a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
    With[{m=40}, CoefficientList[Series[Exp[Sum[Sum[2^(j-1)*j!* StirlingS2[k,j], {j,k}]*x^k/k, {k,m+1}]], {x,0,m}], x]] (* G. C. Greubel, Jun 08 2023 *)
  • PARI
    {a(n) = my(A); if(n<0,0,A = 1+x +x*O(x^n); for(k=1,n, B = subst(A^2,x,x/(1-x))/(1-x) +x*O(x^n); A = A - A^3 + B); polcoef(A,n,x))}
    for(n=0,25,print1(a(n),", "))
    
  • SageMath
    m=50
    def f(n, x): return exp(sum(sum(2^(j-1)*factorial(j)* stirling_number2(k,j)*x^k/k for j in range(1,k+1)) for k in range(1,n+2)))
    def A090351_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(m,x) ).list()
    A090351_list(m-9) # G. C. Greubel, Jun 08 2023

Formula

G.f. satisfies: A(x)^3 = A(x/(1-x))^2 / (1-x).
a(n) ~ (n-1)! / (6 * (log(3/2))^(n+1)). - Vaclav Kotesovec, Nov 18 2014
O.g.f. A(x) = exp( Sum_{n >= 1} b(n)*x^n/n ), where b(n) = Sum_{k = 1..n} k!*Stirling2(n,k)*2^(k-1) = A050351(n) = 1/2*A004123(n+1) for n >= 1. - Peter Bala, May 26 2015
G.f. satisfies [x^n] 1/A(x)^(2*n-2) = [x^n] 1/A(x)^(3*n-3) = -(n-1)*A088222(n) for n >= 0. - Paul D. Hanna, Apr 28 2025
G.f.: Product_{k>=1} 1/(1 - k*x)^((1/6) * (2/3)^k). - Seiichi Manyama, May 26 2025

A185896 Triangle of coefficients of (1/sec^2(x))*D^n(sec^2(x)) in powers of t = tan(x), where D = d/dx.

Original entry on oeis.org

1, 0, 2, 2, 0, 6, 0, 16, 0, 24, 16, 0, 120, 0, 120, 0, 272, 0, 960, 0, 720, 272, 0, 3696, 0, 8400, 0, 5040, 0, 7936, 0, 48384, 0, 80640, 0, 40320, 7936, 0, 168960, 0, 645120, 0, 846720, 0, 362880, 0, 353792, 0, 3256320, 0, 8951040, 0, 9676800, 0, 3628800
Offset: 0

Views

Author

Peter Bala, Feb 07 2011

Keywords

Comments

DEFINITION
Define polynomials R(n,t) with t = tan(x) by
... (d/dx)^n sec^2(x) = R(n,tan(x))*sec^2(x).
The first few are
... R(0,t) = 1
... R(1,t) = 2*t
... R(2,t) = 2 + 6*t^2
... R(3,t) = 16*t + 24*t^3.
This triangle shows the coefficients of R(n,t) in ascending powers of t called the tangent number triangle in [Hodges and Sukumar].
The polynomials R(n,t) form a companion polynomial sequence to Hoffman's two polynomial sequences - P(n,t) (A155100), the derivative polynomials of the tangent and Q(n,t) (A104035), the derivative polynomials of the secant. See also A008293 and A008294.
COMBINATORIAL INTERPRETATION
A combinatorial interpretation for the polynomial R(n,t) as the generating function for a sign change statistic on certain types of signed permutation can be found in [Verges].
A signed permutation is a sequence (x_1,x_2,...,x_n) of integers such that {|x_1|,|x_2|,...|x_n|} = {1,2...,n}. They form a group, the hyperoctahedral group of order 2^n*n! = A000165(n), isomorphic to the group of symmetries of the n dimensional cube.
Let x_1,...,x_n be a signed permutation.
Then 0,x_1,...,x_n,0 is a snake of type S(n;0,0) when 0 < x_1 > x_2 < ... 0.
For example, 0 4 -3 -1 -2 0 is a snake of type S(4;0,0).
Let sc be the number of sign changes through a snake
... sc = #{i, 1 <= i <= n-1, x_i*x_(i+1) < 0}.
For example, the snake 0 4 -3 -1 -2 0 has sc = 1. The polynomial R(n,t) is the generating function for the sign change statistic on snakes of type S(n+1;0,0):
... R(n,t) = sum {snakes in S(n+1;0,0)} t^sc.
See the example section below for the cases n=1 and n=2.
PRODUCTION MATRIX
Define three arrays R, L, and S as
... R = superdiag[2,3,4,...]
... L = subdiag[1,2,3,...]
... S = diag[2,4,6,...]
with the indicated sequences on the main superdiagonal, the main subdiagonal and main diagonal, respectively, and 0's elsewhere. The array R+L is the production array for this triangle: the first row of (R+L)^n produces the n-th row of the triangle.
On the vector space of complex polynomials the array R, the raising operator, represents the operator p(x) - > d/dx (x^2*p(x)), and the array L, the lowering operator, represents the differential operator d/dx - see Formula (4) below.
The three arrays satisfy the commutation relations
... [R,L] = S, [R,S] = 2*R, [L,S] = -2*L
and hence give a representation of the Lie algebra sl(2).

Examples

			Table begins
  n\k|.....0.....1.....2.....3.....4.....5.....6
  ==============================================
  0..|.....1
  1..|.....0.....2
  2..|.....2.....0.....6
  3..|.....0....16.....0....24
  4..|....16.....0...120.....0...120
  5..|.....0...272.....0...960.....0...720
  6..|...272.....0..3696.....0..8400.....0..5040
Examples of recurrence relation
  T(4,2) = 3*(T(3,1) + T(3,3)) = 3*(16 + 24) = 120;
  T(6,4) = 5*(T(5,3) + T(5,5)) = 5*(960 + 720) = 8400.
Example of integral formula (6)
... Integral_{t = -1..1} (1-t^2)*(16-120*t^2+120*t^4)*(272-3696*t^2+8400*t^4-5040*t^6) dt = 2830336/1365 = -2^13*Bernoulli(12).
Examples of sign change statistic sc on snakes of type (0,0)
= = = = = = = = = = = = = = = = = = = = = =
.....Snakes....# sign changes sc.......t^sc
= = = = = = = = = = = = = = = = = = = = = =
n=1
...0 1 -2 0...........1................t
...0 2 -1 0...........1................t
yields R(1,t) = 2*t;
n=2
...0 1 -2 3 0.........2................t^2
...0 1 -3 2 0.........2................t^2
...0 2 1 3 0..........0................1
...0 2 -1 3 0.........2................t^2
...0 2 -3 1 0.........2................t^2
...0 3 1 2 0..........0................1
...0 3 -1 2 0.........2................t^2
...0 3 -2 1 0.........2................t^2
yields
R(2,t) = 2 + 6*t^2.
		

Crossrefs

Programs

  • Maple
    R = proc(n) option remember;
    if n=0 then RETURN(1);
    else RETURN(expand(diff((u^2+1)*R(n-1), u))); fi;
    end proc;
    for n from 0 to 12 do
    t1 := series(R(n), u, 20);
    lprint(seriestolist(t1));
    od:
  • Mathematica
    Table[(-1)^(n + 1)*(-1)^((n - k)/2)*Sum[j!*StirlingS2[n + 1, j]*2^(n + 1 - j)*(-1)^(n + j - k)*Binomial[j - 1, k], {j, k + 1, n + 1}], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Jul 22 2017 *)
  • PARI
    {T(n, k) = if( n<0 || k<0 || k>n, 0, if(n==k, n!, (k+1)*(T(n-1, k-1) + T(n-1, k+1))))};
    
  • PARI
    {T(n, k) = my(A); if( n<0 || k>n, 0, A=1; for(i=1, n, A = ((1 + x^2) * A)'); polcoeff(A, k))}; /* Michael Somos, Jun 24 2017 */

Formula

GENERATING FUNCTION
E.g.f.:
(1)... F(t,z) = 1/(cos(z)-t*sin(z))^2 = Sum_{n>=0} R(n,t)*z^n/n! = 1 + (2*t)*z + (2+6*t^2)*z^2/2! + (16*t+24*t^3)*z^3/3! + ....
The e.g.f. equals the square of the e.g.f. of A104035.
Continued fraction representation for the o.g.f:
(2)... F(t,z) = 1/(1-2*t*z - 2*(1+t^2)*z^2/(1-4*t*z -...- n*(n+1)*(1+t^2)*z^2/(1-2*n*(n+1)*t*z -....
RECURRENCE RELATION
(3)... T(n,k) = (k+1)*(T(n-1,k-1) + T(n-1,k+1)).
ROW POLYNOMIALS
The polynomials R(n,t) satisfy the recurrence relation
(4)... R(n+1,t) = d/dt{(1+t^2)*R(n,t)} with R(0,t) = 1.
Let D be the derivative operator d/dt and U = t, the shift operator.
(5)... R(n,t) = (D + DUU)^n 1
RELATION WITH OTHER SEQUENCES
A) Derivative Polynomials A155100
The polynomials (1+t^2)*R(n,t) are the polynomials P_(n+2)(t) of A155100.
B) Bernoulli Numbers A000367 and A002445
Put S(n,t) = R(n,i*t), where i = sqrt(-1). We have the definite integral evaluation
(6)... Integral_{t = -1..1} (1-t^2)*S(m,t)*S(n,t) dt = (-1)^((m-n)/2)*2^(m+n+3)*Bernoulli(m+n+2).
The case m = n is equivalent to the result of [Grosset and Veselov]. The methods used there extend to the general case.
C) Zigzag Numbers A000111
(7)... R_n(1) = A000828(n+1) = 2^n*A000111(n+1).
D) Eulerian Numbers A008292
The polynomials R(n,t) are related to the Eulerian polynomials A(n,t) via
(8)... R(n,t) = (t+i)^n*A(n+1,(t-i)/(t+i))
with the inverse identity
(9)... A(n+1,t) = (-i/2)^n*(1-t)^n*R(n,i*(1+t)/(1-t)),
where {A(n,t)}n>=1 = [1,1+t,1+4*t+t^2,1+11*t+11*t^2+t^3,...] is the sequence of Eulerian polynomials and i = sqrt(-1).
E) Ordered set partitions A019538
(10)... R(n,t) = (-2*i)^n*T(n+1,x)/x,
where x = i/2*t - 1/2 and T(n,x) is the n-th row po1ynomial of A019538;
F) Miscellaneous
Column 1 is the sequence of tangent numbers - see A000182.
A000670(n+1) = (-i/2)^n*R(n,3*i).
A004123(n+2) = 2*(-i/2)^n*R(n,5*i).
A080795(n+1) =(-1)^n*(sqrt(-2))^n*R(n,sqrt(-2)). - Peter Bala, Aug 26 2011
From Leonid Bedratyuk, Aug 12 2012: (Start)
T(n,k) = (-1)^(n+1)*(-1)^((n-k)/2)*Sum_{j=k+1..n+1} j! *stirling2(n+1,j) *2^(n+1-j) *(-1)^(n+j-k) *binomial(j-1,k), see A059419.
Sum_{j=i+1..n+1}((1-(-1)^(j-i))/(2*(j-i))*(-1)^((n-j)/2)*T(n,j))=(n+1)*(-1)^((n-1-i)/2)*T(n-1,i), for n>1 and 0
G.f.: 1/G(0,t,x), where G(k,t,x) = 1 - 2*t*x - 2*k*t*x - (1+t^2)*(k+2)*(k+1)*x^2/G(k+1,t,x); (continued fraction due to T. J. Stieltjes). - Sergei N. Gladkovskii, Dec 27 2013

A090352 G.f. satisfies A^3 = BINOMIAL(A)^2, where A = A090351^2.

Original entry on oeis.org

1, 2, 7, 36, 255, 2370, 27713, 393352, 6582068, 126888632, 2767912036, 67362737168, 1808596304964, 53083358012760, 1690443996202428, 58039582729688320, 2136931230333535178, 83981145793974066484
Offset: 0

Author

Paul D. Hanna, Nov 26 2003

Keywords

Comments

See comments in A090351.

Programs

  • Magma
    m:=40;
    f:= func< n, x | Exp((&+[(&+[2^j*Factorial(j)*StirlingSecond(k, j)*x^k/k: j in [1..k]]): k in [1..n+2]])) >;
    R:=PowerSeriesRing(Rationals(), m+1);  // A090352
    Coefficients(R!( f(m, x) )); // G. C. Greubel, Jul 07 2023
    
  • Mathematica
    nmax = 17; sol = {a[0] -> 1};
    Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x]^3 - A[x/(1 - x)]^2/(1 - x)^2 + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
    sol /. Rule -> Set;
    a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
  • PARI
    {a(n)=local(A); if(n<1,0,A=1+x+x*O(x^n); for(k=1,n,B=subst(A,x, x/(1-x))/(1-x)+x*O(x^n); A=A-A^3+B^2); polcoeff(A,n,x))}
    
  • SageMath
    m=50
    def f(n, x): return exp(sum(sum(2^j*factorial(j)*stirling_number2(k, j)*x^k/k for j in range(1, k+1)) for k in range(1, n+2)))
    def A090352_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(m, x) ).list()
    A090352_list(m-9) # G. C. Greubel, Jul 07 2023

Formula

G.f. satisfies: A(x)^3 = A(x/(1-x))^2/(1-x)^2.
From Peter Bala, May 26 2015: (Start)
O.g.f. A(x) = exp( Sum_{n >= 1} b(n)*x^n/n ), where b(n) = Sum_{k = 1..n} k!*Stirling2(n,k)*2^k = A004123(n+1) = 2*A050351(n) for n >= 1. Cf. A084785.
BINOMIAL(A(x)) = exp( Sum_{n >= 1} c(n)*x^n/n ) where c(n) = (-1)^n*Sum_{k = 1..n} k!*Stirling2(n,k)*(-3)^k = A201339(n) = 3*A050351(n) for n >= 1.
A(x) = B(x)^2 and BINOMIAL(A(x)) = B(x)^3 where B(x) = 1 + x + 3*x^2 + 15*x^3 + 108*x^4 + ... is the o.g.f. for A090351. See also A019538. (End)
G.f.: Product_{k>=1} 1/(1 - k*x)^((1/3) * (2/3)^k). - Seiichi Manyama, May 26 2025
a(n) ~ (n-1)! / (3 * log(3/2)^(n+1)). - Vaclav Kotesovec, May 28 2025

A278075 Coefficients of the signed Fubini polynomials in ascending order, F_n(x) = Sum_{k=0..n} (-1)^n*Stirling2(n,k)*k!*(-x)^k.

Original entry on oeis.org

1, 0, 1, 0, -1, 2, 0, 1, -6, 6, 0, -1, 14, -36, 24, 0, 1, -30, 150, -240, 120, 0, -1, 62, -540, 1560, -1800, 720, 0, 1, -126, 1806, -8400, 16800, -15120, 5040, 0, -1, 254, -5796, 40824, -126000, 191520, -141120, 40320, 0, 1, -510, 18150, -186480, 834120, -1905120, 2328480, -1451520, 362880
Offset: 0

Author

Peter Luschny, Jan 09 2017

Keywords

Comments

Signed version of A131689.
Integral_{x=0..1} F_n(x) = B_n(1) where B_n(x) are the Bernoulli polynomials.

Examples

			Triangle of coefficients starts:
[1]
[0,  1]
[0, -1,    2]
[0,  1,   -6,    6]
[0, -1,   14,  -36,    24]
[0,  1,  -30,  150,  -240,   120]
[0, -1,   62, -540,  1560, -1800,    720]
[0,  1, -126, 1806, -8400, 16800, -15120, 5040]
		

Crossrefs

Row sums are A000012, diagonal is A000142.
Cf. A131689 (unsigned), A019538 (n>0, k>0), A090582.
Let F(n, x) = Sum_{k=0..n} T(n,k)*x^k then, apart from possible differences in the sign or the offset, we have: F(n, -5) = A094418(n), F(n, -4) = A094417(n), F(n, -3) = A032033(n), F(n, -2) = A004123(n), F(n, -1) = A000670(n), F(n, 0) = A000007(n), F(n, 1) = A000012(n), F(n, 2) = A000629(n), F(n, 3) = A201339(n), F(n, 4) = A201354(n), F(n, 5) = A201365(n).

Programs

  • Julia
    function T(n, k)
        if k < 0 || k > n return 0 end
        if n == 0 && k == 0 return 1 end
        k*(T(n-1, k-1) - T(n-1, k))
    end
    for n in 0:7
        println([T(n,k) for k in 0:n])
    end
    # Peter Luschny, Mar 26 2020
  • Maple
    F := (n,x) -> add((-1)^n*Stirling2(n,k)*k!*(-x)^k, k=0..n):
    for n from 0 to 10 do PolynomialTools:-CoefficientList(F(n,x), x) od;
  • Mathematica
    T[ n_, k_] := If[ n < 0 || k < 0, 0, (-1)^(n - k) k! StirlingS2[n, k]]; (* Michael Somos, Jul 08 2018 *)
  • PARI
    {T(n, k) = if( n<0, 0, sum(i=0, k, (-1)^(n + i) * binomial(k, i) * i^n))};
    /* Michael Somos, Jul 08 2018 */
    

Formula

T(n, k) = (-1)^(n-k) * Stirling2(n, k) * k!.
E.g.f.: 1/(1-x*(1-exp(-t))) = Sum_{n>=0} F_n(x) t^n/n!.
T(n, k) = k*(T(n-1, k-1) - T(n-1, k)) for 0 <= k <= n, T(0, 0) = 1, otherwise 0.
Bernoulli numbers are given by B(n) = Sum_{k = 0..n} T(n, k) / (k+1) with B(1) = 1/2. - Michael Somos, Jul 08 2018
Let F_n(x) be the row polynomials of this sequence and W_n(x) the row polynomials of A163626. Then F_n(1 - x) = W_n(x) and Integral_{x=0..1} U(n, x) = Bernoulli(n, 1) for U in {W, F}. - Peter Luschny, Aug 10 2021
T(n, k) = [z^k] Sum_{k=0..n} Eulerian(n, k)*z^(k+1)*(z-1)^(n-k-1) for n >= 1, where Eulerian(n, k) = A173018(n, k). - Peter Luschny, Aug 15 2022

A238464 Generalized ordered Bell numbers Bo(7,n).

Original entry on oeis.org

1, 7, 105, 2359, 70665, 2646007, 118893705, 6232661239, 373405001865, 25167452766967, 1884759251911305, 155262005162499319, 13952854271421949065, 1358385484966283220727, 142418920493123648992905, 15998363870912950298468599
Offset: 0

Author

Vincenzo Librandi, Mar 17 2014

Keywords

Comments

Row 7 of array A094416, which has more information.

Programs

  • Magma
    m:=20; R:=LaurentSeriesRing(RationalField(), m); b:=Coefficients(R!(1/(8 - 7*Exp(x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // Bruno Berselli, Mar 17 2014
    
  • Mathematica
    t=30; Range[0, t]! CoefficientList[Series[1/(8 - 7 Exp[x]), {x, 0, t}], x]
  • PARI
    x='x+O('x^66); Vec(serlaplace(1/(8 - 7*exp(x)))) \\ Joerg Arndt, Mar 17 2014

Formula

E.g.f.: 1/(8 - 7*exp(x)).
a(n) ~ n! / (8*(log(8/7))^(n+1)). - Vaclav Kotesovec, Mar 20 2014
a(0) = 1; a(n) = 7*a(n-1) - 8*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 17 2023

A343523 a(0) = 1; a(n) = 2 * Sum_{k=1..n} binomial(n,k) * a(k-1).

Original entry on oeis.org

1, 2, 8, 34, 164, 878, 5136, 32490, 220476, 1594470, 12223016, 98876322, 840804820, 7491247006, 69730182720, 676390547034, 6821988655468, 71398971351510, 774032400213336, 8677733804696594, 100459693769214980, 1199306075189097230, 14746332963835756400, 186534818943430728906
Offset: 0

Author

Ilya Gutkovskiy, Jun 07 2021

Keywords

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = 2 Sum[Binomial[n, k] a[k - 1], {k, 1, n}]; Table[a[n], {n, 0, 23}]
    nmax = 23; A[] = 0; Do[A[x] = 1 + 2 x A[x/(1 - x)]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + 2 * x * A(x/(1 - x)) / (1 - x)^2.

A367470 Expansion of e.g.f. 1 / (3 - 2 * exp(x))^2.

Original entry on oeis.org

1, 4, 28, 268, 3244, 47404, 810988, 15891628, 350851564, 8615761324, 232911898348, 6872755977388, 219799913877484, 7572909749244844, 279630706025296108, 11016315458773541548, 461211305514352065004, 20448268640012928321964
Offset: 0

Author

Seiichi Manyama, Nov 19 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 2^k*(k+1)!*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} 2^k * (k+1)! * Stirling2(n,k).
a(0) = 1; a(n) = 2*Sum_{k=1..n} (k/n + 1) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = 4*a(n-1) - 3*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k).
a(n) ~ sqrt(2*Pi) * n^(n + 3/2) / (9 * log(3/2)^(n+2) * exp(n)). - Vaclav Kotesovec, May 20 2025

A355110 Expansion of e.g.f. 2 / (3 - 2*x - exp(2*x)).

Original entry on oeis.org

1, 2, 10, 76, 768, 9696, 146896, 2596448, 52449536, 1191944704, 30097334784, 835973778432, 25330620762112, 831497823494144, 29394162040580096, 1113330929935101952, 44979662118902366208, 1930798895281527717888, 87756941394038739828736, 4210241529540625311727616
Offset: 0

Author

Ilya Gutkovskiy, Jun 19 2022

Keywords

Programs

  • Mathematica
    nmax = 19; CoefficientList[Series[2/(3 - 2 x - Exp[2 x]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = n a[n - 1] + Sum[Binomial[n, k] 2^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]

Formula

a(0) = 1; a(n) = n * a(n-1) + Sum_{k=1..n} binomial(n,k) * 2^(k-1) * a(n-k).
a(n) ~ n! / ((1 + LambertW(exp(3))) * ((3 - LambertW(exp(3)))/2)^(n+1)). - Vaclav Kotesovec, Jun 19 2022

A367471 Expansion of e.g.f. 1 / (3 - 2 * exp(x))^3.

Original entry on oeis.org

1, 6, 54, 630, 8982, 150966, 2918934, 63772470, 1552910742, 41690570166, 1223096629014, 38924237638710, 1335418262833302, 49129420920630966, 1929262811804022294, 80540656071983191350, 3561781875173605408662, 166331104582900651581366
Offset: 0

Author

Seiichi Manyama, Nov 19 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 2^k*(k+2)!*stirling(n, k, 2))/2;

Formula

a(n) = (1/2) * Sum_{k=0..n} 2^k * (k+2)! * Stirling2(n,k).
a(0) = 1; a(n) = 2*Sum_{k=1..n} (2*k/n + 1) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = 6*a(n-1) - 3*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k).
Previous Showing 11-20 of 54 results. Next