cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 54 results. Next

A004122 Generalized weak orders on n points.

Original entry on oeis.org

2, 13, 123, 1546, 24283, 457699, 10064848, 252945467, 7151532895, 224661610888, 7763387794649, 292659248485051, 11951855446598278, 525645673381008537, 24769319755329986599, 1244984053628241578058, 66487872534167725541751
Offset: 1

Views

Author

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • C. G. Wagner, Enumeration of generalized weak orders. Arch. Math. (Basel) 39 (1982), no. 2, 147-152.

Crossrefs

Programs

  • Mathematica
    With[{nn=20},Rest[CoefficientList[Series[1/(2-Exp[x]Exp[Exp[x]-1]),{x,0,nn}], x] Range[0,nn]!]] (* Harvey P. Dale, Nov 05 2011 *)

Formula

E.g.f. : 1/(2-exp(x)*exp(exp(x)-1)).

Extensions

Formula and more terms from Vladeta Jovovic, Mar 27 2001

A094503 Triangle read by rows: coefficients d(n,k) of Andre polynomials D(x,n) = Sum_{k>0} d(n,k)*x^k.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 11, 4, 1, 26, 34, 1, 57, 180, 34, 1, 120, 768, 496, 1, 247, 2904, 4288, 496, 1, 502, 10194, 28768, 11056, 1, 1013, 34096, 166042, 141584, 11056, 1, 2036, 110392, 868744, 1372088, 349504, 1, 4083, 349500, 4247720, 11204160, 6213288
Offset: 1

Views

Author

Philippe Deléham, Jun 09 2004

Keywords

Comments

a(n,k) is the number of increasing 0-1-2 trees on [n] with k leaves. An increasing 0-1-2 tree on [n] is an unordered tree on [n], rooted at 1, in which each vertex has <= 2 children and the labels increase along each path from the root. Example: a(4,2)=4 counts the trees with edges as follows, {1->2->3,1->4}, {1->2->4,1->3}, {1->2->4,2->3}, {1->3->4,1->2}. - David Callan, Oct 24 2004

Examples

			Triangle begins:
  1
  1
  1  1
  1  4
  1 11   4
  1 26  34
  1 57 180 34
  ...
From _Peter Bala_, Jun 26 2012: (Start)
Recurrence equation: T(6,3) = 3*T(5,3) + 2*T(5,2) = 3*4 + 2*11 = 34.
n = 4: the 5 weighted non-plane increasing 0-1-2 trees on 4 vertices are
.........................................................
..4......................................................
..|......................................................
..3............4............4.............3.......3...4..
..|.........../............/............./.........\./...
..2......2...3........3...2.........4...2........(t)2....
..|.......\./..........\./...........\./............|....
..1.....(t)1.........(t)1..........(t)1.............1....
.........................................................
Hence row polynomial R(4,t) = (1 + 4*t)*t.
(End)
		

Crossrefs

Programs

  • Maple
    A094503:=proc(n,k) options remember: if(n=1 and k=1) then RETURN(1) elif(1<=k and k<=floor((n+1)/2) and n>=1) then RETURN(k*A094503(n-1,k)+(n+2-2*k)*A094503(n-1,k-1)) else RETURN(0) fi: end; seq(seq(A094503(n,k),k=1..floor((n+1)/2)),n=1..14);
  • Mathematica
    t[1, 1] = 1; t[n_, k_] /; Not[1 <= k <= (n+1)/2] = 0; t[n_, k_] := t[n, k] = k*t[n-1, k] + (n+2-2*k)*t[n-1, k-1]; Table[t[n, k], {n, 0, 13}, {k, 1, (n + 1)/2}] // Flatten (* Jean-François Alcover, Nov 22 2012, after Maple *)
  • Sage
    def p(n) :
        s = var('s'); u = sqrt(s^2-2)
        egf = u*x-2*ln((exp(u*x)*(1-s/u)+s/u+1)/2)
        return factorial(n+2)*egf.series(x,n+4).coefficient(x,n+2)
    def A094503_row(n) : return [p(n).coefficient(s,n-2*i) for i in (0..n//2)]
    for n in (0..6): print(A094503_row(n)) # Peter Luschny, Jul 01 2012

Formula

D(1, n) = A000111(n), Euler or up/down numbers. D(1/2, n) = A000142(n)*(1/2)^n. D(1/4, n) = A080795(n)*(1/4)^n.
From Peter Bala, Jun 26 2012: (Start):
Recurrence equation: T(n,k) = k*T(n-1,k) + (n+2-2*k)*T(n-1,k-1) for n >= 1 and 1 <= k <= floor((n+1)/2).
Let r(t) = sqrt(1-2*t) and w(t) = (1-r(t))/(1+r(t)). The e.g.f. is F(t,z) = r(t)*(1 + w(t)*exp(r(t)*z))/(1 - w(t)*exp(r(t)*z)) = 1 + t*z + t*z^2/2! + (t+t^2)*z^3/3! + (t+4*t^2)*z^4/4! + ... (Foata and Han, 2001, section 7).
Note that (F(2*t,z) - 1)/(2*t) is the e.g.f. for A101280.
The modified e.g.f. A(t,z) := (F(t,z) - 1)/t = z + z^2/2! + (1+t)*z^3/3! + (1+4*t)*z^4/4! + ... satisfies the autonomous partial differential equation dA/dz = 1 + A + 1/2*t*A^2 with A(t,0) = 1. It follows that the inverse function A(t,z)^(-1) may be expressed as an integral: A(t,z)^(-1) = Integral_{x = 0..z} 1/(1+x+1/2*t*x^2) dx.
Applying [Dominici, Theorem 4.1] to invert the integral gives the following method for calculating the row polynomials R(n,t) of the table: let f(t,x) = 1+x+1/2*t*x^2 and let D be the operator f(t,x)*d/dx. Then R(n+1,t) = t*D^n(f(t,x)) evaluated at x = 0.
By Bergeron et al., Theorem 1, the shifted row polynomial 1/t*R(n,t) is the generating function for rooted non-plane increasing 0-1-2 trees on n vertices, where the vertices of outdegree 2 have weight t and all other vertices have weight 1. An example is given below.
1/(2*t)*(1+t)^(n+1)*R(n,2*t/(1+t)^2) = the n-th Eulerian polynomial of A008292. For example, n = 5 gives 1/(2*t)*(1+t)^6*R(5,2*t/(1+t)^2) = 1 + 26*t + 66*t^2 + 26*t^3 + t^4.
A000142(n) = 2^n*R(n,1/2); A080795(n) = 4^n*R(n,1/4);
A000670(n) = 3/4*3^n*R(n,4/9); A004123(n+1) = 5/6*5^n*R(n,12/25).
(End)
There is a second family of polynomials which also matches the data and is different from the André polynomials as defined by Foata and Han (2001), formula 3.5. Let u = sqrt(s^2-2) and F(s,x) = u*x-2*log((exp(u*x)*(1-s/u)+s/u+1)/2), then for n>=0 the sequence of polynomials p_{n}(s) = (n+2)!*[x^(n+2)]F(s,x) starts 1, s, s^2+1, s^3+4*s, s^4+11*s^2+4, s^5+26*s^3+34*s, s^6+57*s^4+180*s^2+34, ... and the nonzero coefficients of these polynomials in descending order coincide with the sequence a(n). p_{n}(0) is an aerated version of the reduced tangent numbers, p_{2*n}(0) = A002105(n+1) for n>=0. In contrast, the André polynomials vanish at t=0 except for n=0. - Peter Luschny, Jul 01 2012
T(n,k) = A008303(n,k)/2^(n-k). - Ammar Khatab, Aug 17 2024

A154694 Triangle read by rows: T(n,k) = ((3/2)^k*2^n + (2/3)^k*3^n)*A008292(n+1,k+1).

Original entry on oeis.org

2, 5, 5, 13, 48, 13, 35, 330, 330, 35, 97, 2028, 4752, 2028, 97, 275, 11970, 54360, 54360, 11970, 275, 793, 69840, 557388, 1043712, 557388, 69840, 793, 2315, 407550, 5409180, 16868520, 16868520, 5409180, 407550, 2315, 6817, 2388516, 51011136, 247761072, 404844480, 247761072, 51011136, 2388516, 6817
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Jan 14 2009

Keywords

Examples

			Triangle begins as:
     2;
     5,      5;
    13,     48,      13;
    35,    330,     330,       35;
    97,   2028,    4752,     2028,       97;
   275,  11970,   54360,    54360,    11970,     275;
   793,  69840,  557388,  1043712,   557388,   69840,    793;
  2315, 407550, 5409180, 16868520, 16868520, 5409180, 407550, 2315;
		

Crossrefs

Cf. A004123 (row sums), A154693, A256890.

Programs

  • Magma
    A154694:= func< n,k | (2^(n-k)*3^k+2^k*3^(n-k))*EulerianNumber(n+1, k) >;
    [A154694(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 18 2025
    
  • Maple
    A154694 := proc(n,m)
        (3^m*2^(n-m)+2^m*3^(n-m))*A008292(n+1,m+1) ;
    end proc:
    seq(seq( A154694(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Mar 11 2024
  • Mathematica
    T[n_, k_, p_, q_] := (p^(n - k)*q^k + p^k*q^(n - k))*Eulerian[n+1,k];
    Table[T[n,k,2,3], {n,0,12}, {k,0,n}]//Flatten
  • Python
    from sage.all import *
    from sage.combinat.combinat import eulerian_number
    def A154694(n,k): return (pow(2,n-k)*pow(3,k)+pow(2,k)*pow(3,n-k))*eulerian_number(n+1,k)
    print(flatten([[A154694(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 18 2025

Formula

Sum_{k=0..n} T(n, k) = A004123(n+2).

Extensions

Definition simplified by the Assoc. Eds. of the OEIS, Jun 07 2010

A320352 Expansion of e.g.f. (exp(x) - 1)/(exp(x) - exp(2*x) + 1).

Original entry on oeis.org

0, 1, 3, 19, 159, 1651, 20583, 299419, 4977759, 93097891, 1934655063, 44224195819, 1102820674959, 29792843865331, 866769668577543, 27018340680076219, 898343366411181759, 31736205208791131971, 1187110673532381604023, 46871464129796857140619, 1948059531745350527058159
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 11 2018

Keywords

Comments

From Peter Bala, Aug 19 2025: (Start)
Conjecture: Let k be a positive integer. The sequence obtained by reducing a(n) modulo k is eventually periodic with the period dividing phi(k) = A000010(k). For example, modulo 9 we obtain the sequence [0, 1, 3, 1, 6, 4, 0, 7, 3, 1, 6, 4, 0, 7, 3, 1, 6, 4, 0, 7, ...] with an apparent period of 6 = phi(9) beginning at n = 2. Cf. A004123.(End)

Crossrefs

Programs

  • Maple
    seq(n!*coeff(series((exp(x) - 1)/(exp(x) - exp(2*x) + 1), x=0, 22), x, n), n=0..21); # Paolo P. Lava, Jan 09 2019
  • Mathematica
    nmax = 20; CoefficientList[Series[(Exp[x] - 1)/(Exp[x] - Exp[2 x] + 1), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[StirlingS2[n, k] Fibonacci[k] k!, {k, 0, n}], {n, 0, 20}]

Formula

E.g.f.: (1 + sinh(x) - cosh(x))/(1 - 2*sinh(x)).
a(n) = Sum_{k=0..n} Stirling2(n,k)*Fibonacci(k)*k!.
a(n) ~ n! / (sqrt(5) * phi^2 * (log(phi))^(n+1)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 12 2018

A344499 T(n, k) = F(n - k, k), where F(n, x) is the Fubini polynomial. Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 13, 10, 3, 1, 0, 75, 74, 21, 4, 1, 0, 541, 730, 219, 36, 5, 1, 0, 4683, 9002, 3045, 484, 55, 6, 1, 0, 47293, 133210, 52923, 8676, 905, 78, 7, 1, 0, 545835, 2299754, 1103781, 194404, 19855, 1518, 105, 8, 1, 0, 7087261, 45375130, 26857659, 5227236, 544505, 39390, 2359, 136, 9, 1
Offset: 0

Views

Author

Peter Luschny, May 21 2021

Keywords

Comments

The array rows are recursively generated by applying the Akiyama-Tanigawa algorithm to the powers (see the Python implementation below). In this way the array becomes the image of A004248 under the AT-transformation when applied to the columns of A004248. This makes the array closely linked to A371761, which is generated in the same way, but applied to the rows of A004248. - Peter Luschny, Apr 27 2024

Examples

			Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1,      1;
[3] 0, 3,      2,       1;
[4] 0, 13,     10,      3,       1;
[5] 0, 75,     74,      21,      4,      1;
[6] 0, 541,    730,     219,     36,     5,     1;
[7] 0, 4683,   9002,    3045,    484,    55,    6,    1;
[8] 0, 47293,  133210,  52923,   8676,   905,   78,   7,   1;
[9] 0, 545835, 2299754, 1103781, 194404, 19855, 1518, 105, 8, 1;
.
Seen as an array A(n, k) = T(n + k, n):
[0] [1, 0,   0,    0,     0,       0,         0, ...  A000007
[1] [1, 1,   3,   13,    75,     541,      4683, ...  A000670
[2] [1, 2,  10,   74,   730,    9002,    133210, ...  A004123
[3] [1, 3,  21,  219,  3045,   52923,   1103781, ...  A032033
[4] [1, 4,  36,  484,  8676,  194404,   5227236, ...  A094417
[5] [1, 5,  55,  905, 19855,  544505,  17919055, ...  A094418
[6] [1, 6,  78, 1518, 39390, 1277646,  49729758, ...  A094419
[7] [1, 7, 105, 2359, 70665, 2646007, 118893705, ...  A238464
		

Crossrefs

Variant of the array is A094416 (which has column 0 and row 0 missing).
The coefficients of the Fubini polynomials are A131689.
Cf. A094420 (main diagonal of array), A372346 (row sums), A004248, A371761.

Programs

  • Maple
    F := proc(n) option remember; if n = 0 then return 1 fi:
    expand(add(binomial(n, k)*F(n - k)*x, k = 1..n)) end:
    seq(seq(subs(x = k, F(n - k)), k = 0..n), n = 0..10);
  • Mathematica
    F[n_] := F[n] = If[n == 0, 1,
       Expand[Sum[Binomial[n, k]*F[n - k]*x, {k, 1, n}]]];
    Table[Table[F[n - k] /. x -> k, {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jun 06 2024, after Peter Luschny *)
  • SageMath
    # Computes the triangle.
    @cached_function
    def F(n):
        R. = PolynomialRing(ZZ)
        if n == 0: return R(1)
        return R(sum(binomial(n, k)*F(n - k)*x for k in (1..n)))
    def Fval(n): return [F(n - k).substitute(x = k) for k in (0..n)]
    for n in range(10): print(Fval(n))
    
  • SageMath
    # Computes the square array using the Akiyama-Tanigawa algorithm.
    def ATFubini(n, len):
        A = [0] * len
        R = [0] * len
        for k in range(len):
            R[k] = (n + 1)**k  # Chancing this to R[k] = k**n generates A371761.
            for j in range(k, 0, -1):
                R[j - 1] = j * (R[j] - R[j - 1])
            A[k] = R[0]
        return A
    for n in range(8): print([n], ATFubini(n, 7))  # Peter Luschny, Apr 27 2024

Formula

T(n, k) = (n - k)! * [x^(n - k)] (1 / (1 + k * (1 - exp(x)))).
T(2*n, n) = A094420(n).

A004121 Generalized weak orders on n points.

Original entry on oeis.org

2, 16, 208, 3968, 109568, 4793344, 410662912, 82657083392, 38274970222592, 37590755515826176, 75458309991776124928, 305873605165090925969408, 2491832958314452159507202048, 40704585435508852018947014262784
Offset: 1

Views

Author

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • C. G. Wagner, Enumeration of generalized weak orders. Arch. Math. (Basel) 39 (1982), no. 2, 147-152.

Crossrefs

Cf. A004122, A004123, A000670 (asymmetric generalized weak orders on n points).

Programs

  • Mathematica
    max = 14; f[x_] := 1/(1 - Sum[(2^(i*(i+1)/2)*x^i)/i!, {i, 1, max}]); Drop[ CoefficientList[ Series[f[x], {x, 0, max}], x]*Range[0, max]!, 1] (* Jean-François Alcover, Oct 21 2011, after g.f. *)

Formula

E.g.f.: 1/(1 - Sum_{i >= 1} 2^binomial(i+1, 2)*x^i/i!).

Extensions

Formula and more terms from Vladeta Jovovic, Mar 27 2001

A195205 Triangle of coefficients of a sequence of binomial type polynomials.

Original entry on oeis.org

3, 6, 9, 30, 54, 27, 222, 468, 324, 81, 2190, 5130, 4320, 1620, 243, 27006, 68400, 65610, 30780, 7290, 729, 399630, 1076166, 1135890, 618030, 187110, 30618, 2187, 6899262, 19532268, 22212792, 13471920, 4796820, 1020600, 122472, 6561
Offset: 1

Views

Author

Peter Bala, Sep 13 2011

Keywords

Comments

Define a polynomial sequence P_n(x) by means of the recursion
P_(n+1)(x) = x*(P_n(x) + 2*P_n(x+1)), with P_0(x) = 1.
The first few values are
P_1(x) = 3*x, P_2(x) = 3*x*(3*x + 2),
P_3(x) = 3*x*(9*x^2 + 18*x + 10),
P_4(x) = 3*x*(27*x^3 + 108*x^2 + 156*x + 74).
The present table shows the coefficients of these polynomials (excluding P_0(x)) in ascending powers of x. Compare with A195204.
Triangle T(n,k) (1 <= k <= n), read by rows, given by (0, 2, 3, 4, 6, 6, 9, 8, 12, 10, 15, ...) DELTA (3, 0, 3, 0, 3, 0, 3, 0, 3, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 22 2011

Examples

			Triangle begins
n\k|.....1.......2......3......4......5......6
==============================================
..1|.....3
..2|.....6.......9
..3|....30......54.....27
..4|...222.....468....324.....81
..5|..2190....5130...4320...1620....243
..6|.27006...68400..65610..30780...7290....729
...
Triangle (0, 2, 3, 4, 6, 6, 9, ...) DELTA (3, 0, 3, 0, 3, 0, 3, 0, ...) begins:
1;
0,     3;
0,     6,     9;
0,    30,    54,    27;
0,   222,   468,   324,    81;
0,  2190,  5130,  4320,  1620,   243;
0, 27006, 68400, 65610, 30780,  7290,   729;
... - _Philippe Deléham_, Dec 22 2011
		

Crossrefs

Cf. A004123 ((1/3)*column 1), A050351 ((1/3)*row sums), A179929 (delta operator coeffs.), A195204.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> `if`(n=0,3,polylog(-n, 2/3)), 10); # Peter Luschny, Jan 29 2016
  • Mathematica
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 10;
    M = BellMatrix[If[# == 0, 3, PolyLog[-#, 2/3]]&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)

Formula

E.g.f.: F(x,z) := (exp(z)/(3 - 2*exp(z)))^x = 1 + 3*x*z + (6*x + 9*x^2)*z^2/2! + (30*x + 54*x^2 + 27*x^3)*z^3/3! + ....
The generating function F(x,z) = Sum_{n>=0} P_n(x)*z^n/n! satisfies the partial differential equation d/dz(F(x,z)) = x*F(x,z) + 2*x*F(x+1,z). Hence the row generating polynomials P_n(x) satisfy the recurrence P_(n+1)(x) = x*(P_n(x) + 2*P_n(x+1)), with P_0(x) = 1. The form of the e.g.f. shows that the polynomials P_n(x) are a sequence of binomial type. In what follows we denote P_n(x) by x^[n].
Relation with rising factorials
x^[n] = Sum_{k=1..n} (-1)^(n-k)*Stirling2(n,k)*3^k*x*(x+1)*...*(x+k-1),
and its inverse formula
3^n*x*(x+1)*...*(x+n-1) = Sum_{k=1..n} |Stirling1(n,k)|*x^[k].
The delta operator D*:
The row polynomials form a polynomial sequence of binomial type. If D denotes the derivative operator 1/3*d/dx then the associated delta operator D* is given by D* = D - 2*D^2/2! + 2*D^3/3! + 6*D^4/4! - 30*D^5/5! - ..., where the sequence of coefficients [1, -2, 2, 6, -30, -42, 882, ...] equals (-1)^n*A179929(n). D* is the lowering operator for the row polynomials, that is, (D*)x^[n] = n*x^[n-1].
Generalized Dobinski formula:
exp(-x)*Sum_{k >= 1} (-k)^[n]*x^k/k! = (-1)^n*Bell(n,3*x),
where the Bell (or exponential) polynomials are defined as
Bell(n,x) := Sum_{k = 1..n} Stirling2(n,k)*x^k.
Relation with the Bell polynomials:
The alternating n-th row entries (-1)^(n+k)*T(n,k) are the connection coefficients expressing the polynomial Bell(n,3*x) as a linear combination of Bell(k,x), 1 <= k <= n. For example for row 4:
Bell(4,3*x) = -222*Bell(1,x) + 468*Bell(2,x) - 324*Bell(3,x) + 81*Bell(4,x).
Generalized Bernoulli summation formula:
We have the following generalization of Bernoulli's formula for the sum of the powers of integers:
3*Sum_{k = 1..n} k^[p] = 1/(p+1)*Sum_{k = 0..p} (-1)^k * binomial(p+1,k)*B_k*n^[p+1-k], where B_k =[1, -1/2, 1/6, 0, -1/30, ...] denotes the sequence of Bernoulli numbers.
Relation with other sequences:
Row sums = 3*A050351(n) for n >= 1. Column 1 = 3*A004123.
T(n,k) = A185285(n,k)*3^k. - Philippe Deléham, Feb 17 2013
Also the Bell transform of 3*A004123. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 29 2016
Conjecture: o.g.f. as a continued fraction of Stieltjes type: 1/(1 - 3*x*z/(1 - 2*z/(1 - 3*(x + 1)*z/(1 - 4*z/(1 - 3*(x + 2)*z/(1 - 6*z/(1 - 3*(x + 3)*z/(1 - 8*z/(1 - ... ))))))))). - Peter Bala, Dec 12 2024

A238465 Generalized ordered Bell numbers Bo(8,n).

Original entry on oeis.org

1, 8, 136, 3464, 117640, 4993928, 254396296, 15119104904, 1026912225160, 78468091562888, 6662087721342856, 622186077361470344, 63389713864392140680, 6996476832548305415048, 831619554631233264449416, 105909083171031626820475784
Offset: 0

Views

Author

Vincenzo Librandi, Mar 18 2014

Keywords

Comments

Row 8 of array A094416, which has more information.

Crossrefs

Programs

  • Magma
    m:=20; R:=LaurentSeriesRing(RationalField(), m); b:=Coefficients(R!(1/(9 - 8*Exp(x)))); [Factorial(n-1)*b[n]: n in [1..m]];
  • Mathematica
    t = 30; Range[0, t]! CoefficientList[Series[1/(9 - 8 Exp[x]), {x, 0, t}], x]

Formula

E.g.f.: 1/(9 - 8*exp(x)).
a(n) ~ n! / (9*(log(9/8))^(n+1)). - Vaclav Kotesovec, Mar 20 2014
a(0) = 1; a(n) = 8*a(n-1) - 9*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 17 2023

A384324 Expansion of Product_{k>=1} 1/(1 - k*x)^((2/3)^k).

Original entry on oeis.org

1, 6, 33, 200, 1428, 12408, 132604, 1730160, 27043866, 495026316, 10388326986, 245555445888, 6446710871724, 185904786328920, 5836500883321164, 198054400887909264, 7220679972923312487, 281402128806812402490, 11671796413017231008663
Offset: 0

Views

Author

Seiichi Manyama, May 26 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 20; A[] = 1; Do[A[x] = -2*A[x] + 3*A[x/(1-x)]^(2/3) / (1-x)^2 + O[x]^j // Normal, {j, 1, terms}]; CoefficientList[A[x], x] (* Vaclav Kotesovec, May 27 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(exp(3*sum(k=1, N, sum(j=0, k, 2^j*j!*stirling(k, j, 2))*x^k/k)))

Formula

G.f. A(x) satisfies A(x) = A(x/(1-x))^(2/3) / (1-x)^2.
G.f.: exp(3 * Sum_{k>=1} A004123(k+1) * x^k/k).
G.f.: B(x)^6, where B(x) is the g.f. of A090351.
a(n) ~ (n-1)! / log(3/2)^(n+1). - Vaclav Kotesovec, May 27 2025

A384362 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = Sum_{i=0..k*n} 2^i * Sum_{j=0..i} (-1)^j * binomial(i,j) * binomial(i-j,n)^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 10, 4, 1, 1, 74, 148, 8, 1, 1, 730, 13540, 2440, 16, 1, 1, 9002, 2308756, 3087368, 42256, 32, 1, 1, 133210, 632363044, 10208479240, 778026256, 752800, 64, 1, 1, 2299754, 253970683348, 69754997963528, 52520969994256, 207633589664, 13660480, 128, 1
Offset: 0

Views

Author

Seiichi Manyama, May 27 2025

Keywords

Examples

			Square array begins:
  1,  1,     1,         1,              1, ...
  1,  2,    10,        74,            730, ...
  1,  4,   148,     13540,        2308756, ...
  1,  8,  2440,   3087368,    10208479240, ...
  1, 16, 42256, 778026256, 52520969994256, ...
		

Crossrefs

Columns k=0..2 give A000012, A000079, A098270.
Rows n=0..1 give A000012, A004123(k+1).

Programs

  • PARI
    a(n, k) = sum(i=0, k*n, 2^i*sum(j=0, i, (-1)^j*binomial(i, j)*binomial(i-j, n)^k));

Formula

A(n,k) = (1/3) * Sum_{j>=0} (2/3)^j * binomial(j,n)^k.
Previous Showing 21-30 of 54 results. Next