cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 190 results. Next

A190166 Number of (1,0)-steps at levels 0,2,4,... in all peakless Motzkin paths of length n.

Original entry on oeis.org

0, 1, 2, 3, 6, 14, 34, 83, 202, 495, 1224, 3046, 7616, 19115, 48130, 121527, 307602, 780244, 1982834, 5047377, 12867438, 32847357, 83952780, 214806750, 550170300, 1410412561, 3618785462, 9292203549, 23877482490, 61397367692, 157972743178, 406693829059, 1047585820586, 2699811117189
Offset: 0

Views

Author

Emeric Deutsch, May 06 2011

Keywords

Comments

a(n)=Sum(k*A190164(n,k),k>=0).
a(n)=A110236(n) - A190169(n).

Examples

			a(4)=6 because in h'h'h'h', h'uhd, uhdh', and uhhd, where u=(1,1), h=(1,0), d=(1,-1), we have 4+1+1+0 h-steps at even levels (marked).
		

Crossrefs

Programs

  • Maple
    G := z/((1-z+z^2)*sqrt((1+z+z^2)*(1-3*z+z^2))): Gser := series(G,z=0,36): seq(coeff(Gser,z,n),n=0..33);

Formula

G.f. = z/[(1-z+z^2)sqrt((1+z+z^2)(1-3z+z^2))].
Conjecture: (-n+1)*a(n) +(3*n-4)*a(n-1) +2*(-n+1)*a(n-2) +3*(n-2)*a(n-3) +2*(-n+3)*a(n-4) +(3*n-8)*a(n-5) +(-n+3)*a(n-6)=0. - R. J. Mathar, Apr 09 2019
a(n) ~ phi^(2*n+2) / (4 * 5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, May 29 2022

A190170 Triangle read by rows: T(n,k) is the number of peakless Motzkin paths of length n and having k UHD's starting at level 0; here U=(1,1), H=(1,0), and D=(1,-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 5, 3, 12, 4, 1, 27, 7, 3, 60, 16, 6, 135, 39, 10, 1, 309, 92, 18, 4, 717, 212, 39, 10, 1680, 488, 94, 20, 1, 3966, 1135, 228, 39, 5, 9423, 2670, 543, 84, 15, 22518, 6336, 1282, 200, 35, 1, 54091, 15132, 3036, 492, 75, 6, 130540, 36327, 7245, 1203, 166, 21
Offset: 0

Views

Author

Emeric Deutsch, May 06 2011

Keywords

Comments

Row n contains 1+floor(n/3) entries.
Sum of entries in row n = A004148(n).
T(n,0)=A190171(n).
Sum(k*T(n,k),k>=0)=A089735(n-3).

Examples

			T(6,2)=1 because we have UHDUHD.
Triangle starts:
1;
1;
1;
1,1;
2,2;
5,3;
12,4,1;
27,7,3;
		

Crossrefs

Programs

  • Maple
    p1 := G-1-z*G-z^2*G*(S-1-z+t*z): p2 := S-1-z*S-z^2*S*(S-1): r := resultant(p1, p2, S): g := RootOf(r, G): Gser := simplify(series(g, z = 0, 21)): for n from 0 to 17 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 17 do seq(coeff(P[n], t, j), j = 0 .. floor((1/3)*n)) end do; # yields sequence in triangular form

Formula

G.f. G=G(t,z) is obtained by elimitaing S from the equations G=1+zG+z^2*G(S-1-z+tz) and S=1+zS+z^2*S(S-1).

A190172 Triangle read by rows: T(n,k) is the number of peakless Motzkin paths of length n having k UHD's; here U=(1,1), H=(1,0), and D=(1,-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 4, 4, 8, 8, 1, 16, 18, 3, 33, 40, 9, 69, 90, 25, 1, 146, 204, 69, 4, 312, 467, 183, 16, 673, 1074, 479, 56, 1, 1463, 2481, 1239, 185, 5, 3202, 5752, 3180, 576, 25, 7050, 13378, 8104, 1734, 105, 1, 15605, 31196, 20544, 5076, 405, 6, 34705, 72912, 51852, 14546, 1451, 36
Offset: 0

Views

Author

Emeric Deutsch, May 06 2011

Keywords

Comments

Number of entries in row n is 1+floor(n/3).
Sum of entries in row n = A004148 (the RNA secondary structure numbers).
T(n,0)=A004149(n).
Sum(k*T(n,k),k>=0)=A110236(n-2) (n>=3).

Examples

			T(5,1)=4 because we have HHUHD, HUHDH, UHDH, and UUHDD.
Triangle starts:
1;
1;
1;
1,1;
2,2;
4,4;
8,8,1;
16,18,3;
		

Crossrefs

Programs

  • Maple
    eq := G = 1+z*G+z^2*G*(G-1-z+t*z): G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 25)): for n from 0 to 17 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 17 do seq(coeff(P[n], t, k), k = 0 .. floor((1/3)*n)) end do; # yields sequence in triangular form

Formula

G.f. G=G(t,z) satisfies the equation G = 1 + zG + z^2*G(G-1-z+tz).

A203019 Number of elevated peakless Motzkin paths.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 4, 8, 17, 37, 82, 185, 423, 978, 2283, 5373, 12735, 30372, 72832, 175502, 424748, 1032004, 2516347, 6155441, 15101701, 37150472, 91618049, 226460893, 560954047, 1392251012, 3461824644, 8622571758, 21511212261, 53745962199
Offset: 0

Views

Author

Keywords

Comments

Essentially the same as A004148: a(0)=a(1)=0 and a(n) = A004148(n-2) for n>=2.

Examples

			G.f. = x^2 + x^3 + x^4 + 2*x^5 + 4*x^6 + 8*x^7 + 17*x^8 + 37*x^9 + ...
		

References

  • A. Panayotopoulos and P. Tsikouras, Properties of meanders, JCMCC 46 (2003), 181-190.
  • A. Panayotopoulos and P. Vlamos, Meandric Polygons, Ars Combinatoria 87 (2008), 147-159.

Programs

  • GAP
    List([0..40],n->Sum([0..Int((n-1)/2)],m->Binomial(2*m+1,m)*Sum([0..n-2*m-2],k->(Binomial(k,n-2*m-k-2)*Binomial(2*m+k,k)*(-1)^(n-k))/(2*m+1)))); # Muniru A Asiru, Aug 13 2018
  • Mathematica
    terms = 34;
    A[] = 0; Do[A[x] = x (x - A[x] / (A[x] - 1)) + O[x]^terms, {terms}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Jul 27 2018, after Michael Somos *)
    Table[Sum[Binomial[2*m + 1, m]*Sum[(Binomial[k, n - 2*m - k - 2]* Binomial[2*m + k, k]*(-1)^(n - k))/(2*m + 1), {k, 0, n - 2*m - 2}], {m, 0, Floor[(n - 1)/2]}], {n, 0, 50}] (* G. C. Greubel, Aug 12 2018 *)
  • Maxima
    a(n):=sum((binomial(2*m+1,m)*sum(binomial(k,n-2*m-k-2)*binomial(2*m+k,k)*(-1)^(n-k),k,0,n-2*m-2))/(2*m+1),m,0,(n-1)/2); /* Vladimir Kruchinin, Mar 12 2016 */
    
  • PARI
    {a(n) = local(A); A = O(x); for( k=1, ceil(n / 3), A = x^2 / (1 - x / (1 - A))); polcoeff( A, n)} /* Michael Somos, May 12 2012 */
    

Formula

G.f.: x^2 / (1 - x / (1 - x^2 / (1 - x / (1 - x^2 / (1 - x / (1 - x^2 / ...)))))). - Michael Somos, May 12 2012
G.f. A(x) =: y satisfies y / x = x + y / (1 - y). - Michael Somos, Jan 31 2014
G.f. A(x) =: y satisfies y = x^2 + (x - x^2)*y + y*y. - Michael Somos, Jan 31 2014
Given g.f. A(x), then B(x) = A(x)/x satisfies B(-B(-x)) = x. - Michael Somos, Jan 31 2014
a(n) = Sum_{m=0..(n-1)/2}((binomial(2*m+1,m)*Sum_{k=0..n-2*m-2}(binomial(k,n-2*m-k-2)*binomial(2*m+k,k)*(-1)^(n-k)))/(2*m+1)). - Vladimir Kruchinin, Mar 12 2016
a(n) ~ 5^(1/4) * phi^(2*n - 2) / (2*sqrt(Pi)*n^(3/2)), where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 14 2018
D-finite with recurrence n*a(n) +(-2*n+3)*a(n-1) +(-n+3)*a(n-2) +(-2*n+9)*a(n-3) +(n-6)*a(n-4)=0. - R. J. Mathar, Jan 25 2023

A247288 Triangle read by rows: T(n,k) is the number of peakless Motzkin paths of length n having k weak peaks.

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 4, 2, 1, 1, 0, 8, 4, 3, 1, 1, 0, 16, 8, 7, 4, 1, 1, 0, 32, 16, 17, 10, 5, 1, 1, 0, 64, 32, 41, 26, 14, 6, 1, 1, 0, 128, 64, 98, 66, 39, 19, 7, 1, 1, 0, 256, 128, 232, 164, 107, 56, 25, 8, 1, 1, 0, 512, 256, 544, 400, 286, 164, 78, 32, 9, 1
Offset: 0

Views

Author

Emeric Deutsch, Sep 14 2014

Keywords

Comments

A weak peak of a Motzkin path is a vertex on the top of a hump.
A hump is an upstep followed by 0 or more flatsteps followed by a downstep. For example, the peakless Motzkin path uhu*h*ddu*h*h*d where u=(1,1), h=(1,0), d(1,-1), has 5 weak peaks (shown by the stars).
Row n (n>=1) contains n entries.
Sum of entries in row n is the RNA secondary structure number A004148(n).
Sum(k*T(n,k), 0<=k<=n) = A247289(n).

Examples

			Row 4 is 1,0,2,1 because the peakless Motzkin paths hhhh, u*h*dhh, hu*h*dh, and u*h*h*d  have 0, 2, 2, and 3 weak peaks (shown by the stars).
Triangle starts:
1;
1;
1,0;
1,0,1;
1,0,2,1;
1,0,4,2,1;
1,0,8,4,3,1;
		

Crossrefs

Programs

  • Maple
    eq := G = 1+z*G+z^2*(G-1-z/(1-z)+t^2*z/(1-t*z))*G: G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 16)): for n from 0 to 14 do P[n] := sort(expand(coeff(Gser, z, n))) end do: 1; for n to 14 do seq(coeff(P[n], t, k), k = 0 .. n-1) end do; # yields sequence in triangular form

Formula

The g.f. G(t,z) satisfies G = 1 + z*G + z^2*(G - 1 - z/(1-z) + t^2*z/(1-t*z))*G.

A247289 Number of weak peaks in all peakless Motzkin paths of length n.

Original entry on oeis.org

0, 0, 0, 2, 7, 18, 45, 110, 267, 652, 1602, 3960, 9845, 24594, 61689, 155270, 391962, 991968, 2515964, 6393610, 16275174, 41491776, 105922244, 270734244, 692756227, 1774418286, 4549173861, 11672860634, 29975156134, 77029918152, 198083586300, 509692521982
Offset: 0

Views

Author

Emeric Deutsch, Sep 14 2014

Keywords

Comments

A weak peak of a Motzkin path is a vertex on the top of a hump.
A hump is an upstep followed by 0 or more flatsteps followed by a downstep. For example, the peakless Motzkin path uhu*h*ddu*h*h*d, where u=(1,1), h=(1,0), d(1,-1), has 5 weak peaks (shown by the stars).
a(n) = Sum(k*A247288(n,k), 0<=k<=n-1).

Examples

			a(4)=7 because the peakless Motzkin paths u*h*dhh, hu*h*dh, and u*h*h*d  have 0, 2, 2, and 3 weak peaks (shown by the stars).
		

Crossrefs

Programs

  • Maple
    f := (2-z)*z^3*g/((1-z)^2*(1-z+z^2-2*z^2*g)): eqg := g = 1+z*g+z^2*g*(g-1): g := RootOf(eqg, g): fser := series(f, z = 0, 35): seq(coeff(fser, z, n), n = 0 .. 33);

Formula

G.f.: (2-z)*z^3*g/((1-z)^2*(1-z+z^2-2*z^2*g)), where g is defined by g = 1 + z*g + z^2*g*(g-1).
D-finite with recurrence n*(n-1)*a(n) +(-7*n^2+28*n-31)*a(n-1) +(n-2)*(13*n-48)*a(n-2) +(-5*n^2+21*n-6)*a(n-3) +(7*n^2-43*n+82)*a(n-4) -(13*n-24)*(n-5)*a(n-5) +(4*n-5)*(n-6)*a(n-6)=0. - R. J. Mathar, Jul 24 2022

A247296 Number of uhd and uHd in all weighted lattice paths B(n).

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 7, 18, 45, 112, 281, 706, 1778, 4490, 11363, 28814, 73199, 186257, 474635, 1211122, 3094171, 7913765, 20261142, 51921920, 133171656, 341836748, 878104607, 2257208148, 5805964495, 14942942127, 38480449261, 99145105834, 255573465001, 659114680270
Offset: 0

Views

Author

Emeric Deutsch, Sep 16 2014

Keywords

Comments

B(n) is the set of lattice paths of weight n that start in (0,0), end on the horizontal axis and never go below this axis, whose steps are of the following four kinds: h = (1,0) of weight 1, H = (1,0) of weight 2, u = (1,1) of weight 2, and d = (1,-1) of weight 1. The weight of a path is the sum of the weights of its steps.
a(n) = A110320(n-3) + A110320(n-4) (n>=5).

Examples

			a(6)=7 because among the 37 (=A004148(7)) members of B(6) only (uhd)hh, h(uhd)h, hh(uhd), H(uhd), (uhd)H, (uHd)h, and h(uHd) contain uhd or uHd (shown between parentheses).
G.f. = x^4 + 3*x^5 + 7*x^6 + 18*x^7 + 45*x^8 + 112*x^9 + 281*x^10 + ...
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0,0,0,0] cat Coefficients(R!(x*(x+1)*(-1 +(1-x-x^2 )/sqrt((1-3*x+x^2)*(1+x+x^2)) )/2)); // G. C. Greubel, Aug 05 2018
  • Maple
    eqg := g = 1+z*g+z^2*g+z^3*g^2: g := RootOf(eqg, g): H := z^4*(1+z)*g/(1-z-z^2-2*z^3*g): Hser := series(H, z = 0, 40): seq(coeff(Hser, z, n), n = 0 .. 35);
  • Mathematica
    a[ n_] := With[{t = (1 - 3 x + x^2) (1 + x + x^2)}, SeriesCoefficient[ x (x + 1) (-1 + (1 - x - x^2) / Sqrt[t]) / 2, {x, 0, n}]]; (* Michael Somos, Sep 16 2014 *)
  • PARI
    x='x+O('x^30); concat(vector(4), Vec(x*(x+1)*(-1 +(1-x-x^2 )/sqrt((1-3*x+x^2)*(1+x+x^2)))/2)) \\ G. C. Greubel, Aug 05 2018
    

Formula

G.f.: G = z^4*(1 + z)*g/(1 - z - z^2 - 2*z^3*g), where g = 1 + z*g + z^2*g + z^3*g^2.
D-finite with recurrence +(n-1)*(202*n-903)*a(n) +(-250*n^2+1095*n-691)*a(n-1) +(-510*n^2+4095*n-8039)*a(n-2) +(-558*n^2+4287*n-7831)*a(n-3) +(-106*n^2+1587*n-4575)*a(n-4) +(154*n-547)*(n-7)*a(n-5)=0. - R. J. Mathar, Jul 24 2022

A247299 Triangle read by rows: T(n,k) is the number of weighted lattice paths B(n) having a total of k h- and H-steps at level 0.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 2, 1, 3, 1, 2, 4, 3, 3, 4, 1, 5, 6, 9, 5, 6, 5, 1, 10, 15, 15, 16, 9, 10, 6, 1, 22, 33, 33, 32, 26, 16, 15, 7, 1, 50, 71, 78, 66, 60, 41, 27, 21, 8, 1, 113, 163, 171, 158, 125, 103, 64, 43, 28, 9, 1, 260, 374, 391, 360, 295, 225, 167, 99, 65, 36, 10, 1
Offset: 0

Views

Author

Emeric Deutsch, Sep 17 2014

Keywords

Comments

B(n) is the set of lattice paths of weight n that start in (0,0), end on the horizontal axis and never go below this axis, whose steps are of the following four kinds: h = (1,0) of weight 1, H = (1,0) of weight 2, u = (1,1) of weight 2, and d = (1,-1) of weight 1. The weight of a path is the sum of the weights of its steps.
Row n contains n+1 entries.
Sum of entries in row n is A004148(n+1) (the 2ndary structure numbers).
T(n,0) = A166300(n).
Sum(k*T(n,k), k=0..n) = A247300(n)

Examples

			Row 3 is 1,0,2,1 because B(3) = {ud, hH, Hh, hhh}.
Triangle starts:
1;
0,1;
0,1,1;
1,0,2,1;
1,2,1,3,1;
2,4,3,3,4,1;
		

Crossrefs

Programs

  • Maple
    eqg := g = 1+z*g+z^2*g+z^3*g^2: g := RootOf(eqg, g): G := 1/(1-t*z-t*z^2-z^3*g): Gser := simplify(series(G, z = 0, 16)): for n from 0 to 13 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 13 do seq(coeff(P[n], t, k), k = 0 .. n) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, y) option remember; `if`(y<0 or y>n or n<0, 0,
          `if`(n=0, 1, expand(`if`(y=0, x, 1)*(b(n-1, y)+
          b(n-2, y)) +b(n-2, y+1) +b(n-1, y-1))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):
    seq(T(n), n=0..14);  # Alois P. Heinz, Sep 17 2014
  • Mathematica
    b[n_, y_] := b[n, y] = If[y<0 || y>n || n<0, 0, If[n == 0, 1, Expand[If[y == 0, x, 1]*(b[n-1, y] + b[n-2, y]) + b[n-2, y+1] + b[n-1, y-1]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 0]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)

Formula

G.f. G = 1/(1 - t*z - t*z^2 - z^3*g), where g is given by g = 1 + z*g + z^2*g + z^3*g^2.

A273713 Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n having k doublerises (n>=2, k>=0). A doublerise in a bargraph is any pair of adjacent up steps.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 5, 3, 1, 8, 13, 9, 4, 1, 17, 32, 28, 14, 5, 1, 37, 80, 81, 50, 20, 6, 1, 82, 201, 231, 165, 80, 27, 7, 1, 185, 505, 653, 526, 295, 119, 35, 8, 1, 423, 1273, 1824, 1644, 1036, 483, 168, 44, 9, 1, 978, 3217, 5058, 5034, 3535, 1848, 742, 228, 54, 10, 1
Offset: 2

Views

Author

Emeric Deutsch, May 28 2016

Keywords

Comments

Number of entries in row n is n-1.
Sum of entries in row n = A082582(n).
T(n,0) = A004148(n-1) (the 2ndary structure numbers).
T(n,1) = A110320(n-2).
Sum(k*T(n,k), k>=0) = A273714(n).

Examples

			Row 4 is 2,2,1 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] and the corresponding drawings show that they have 0, 0, 1, 1, 2 doublerises.
Triangle starts
1;
1,1;
2,2,1;
4,5,3,1;
8,13,9,4,1
		

Crossrefs

Programs

  • Maple
    eq := z*G^2-(1-z-t*z-z^2)*G+z^2 = 0: G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 22)): for n from 2 to 20 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 2 to 20 do seq(coeff(P[n], t, j), j = 0 .. n-2) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, y, t) option remember; expand(`if`(n=0, (1-t),
          `if`(t<0, 0, b(n-1, y+1, 1)*`if`(t=1, z, 1))+
          `if`(t>0 or y<2, 0, b(n, y-1, -1))+
          `if`(y<1, 0, b(n-1, y, 0))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..n-2))(b(n, 0$2)):
    seq(T(n), n=2..16);  # Alois P. Heinz, Jun 06 2016
  • Mathematica
    b[n_, y_, t_] := b[n, y, t] = Expand[If[n == 0, 1 - t, If[t < 0, 0, b[n - 1, y + 1, 1]*If[t == 1, z, 1]] + If[t > 0 || y < 2, 0, b[n, y - 1, -1]] + If[y < 1, 0, b[n - 1, y, 0]]]];
    T[n_] := Function [p, Table[Coefficient[p, z, i], {i, 0, n - 2}]][b[n, 0, 0]];
    Table[T[n], {n, 2, 16}] // Flatten (* Jean-François Alcover, Jul 29 2016, after Alois P. Heinz *)

Formula

G.f.: G = G(t,z) satisfies zG^2 - (1 - z - tz - z^2)G + z^2 = 0.

A292461 Expansion of (1 - x - x^2 + sqrt((1 - x - x^2)^2 - 4*x^3))/2 in powers of x.

Original entry on oeis.org

1, -1, -1, -1, -1, -2, -4, -8, -17, -37, -82, -185, -423, -978, -2283, -5373, -12735, -30372, -72832, -175502, -424748, -1032004, -2516347, -6155441, -15101701, -37150472, -91618049, -226460893, -560954047, -1392251012, -3461824644, -8622571758, -21511212261
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2017

Keywords

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x-x^2 +Sqrt((1-x-x^2)^2 -4*x^3))/2)); // G. C. Greubel, Aug 13 2018
  • Mathematica
    CoefficientList[Series[(1-x-x^2 +Sqrt[(1-x-x^2)^2 -4*x^3])/2, {x, 0, 50} ], x] (* G. C. Greubel, Aug 13 2018 *)
  • PARI
    x='x+O('x^50); Vec((1-x-x^2 +sqrt((1-x-x^2)^2 -4*x^3))/2) \\ G. C. Greubel, Aug 13 2018
    

Formula

Convolution inverse of A292460.
Let f(x) = (1 - x - x^2 - sqrt((1 - x - x^2)^2 - 4*x^3))/(2*x^3).
G.f.: 1-x-x^2-x^3/(1-x-x^2-x^3/(1-x-x^2-x^3/(1-x-x^2-x^3/(1-x-x^2-x^3/(... (continued fraction).
G.f.: 1/f(x) = 1 - x - x^2 - x^3*f(x).
a(n) = -A292460(n-3) for n > 2.
a(n) ~ -5^(1/4) * phi^(2*n - 2) / (2 * sqrt(Pi) * n^(3/2)), where phi is the golden ratio (1+sqrt(5))/2. - Vaclav Kotesovec, Sep 17 2017, simplified Dec 06 2021
Conjecture D-finite with recurrence: n*a(n) +(-2*n+3)*a(n-1) +(-n+3)*a(n-2) +(-2*n+9)*a(n-3) +(n-6)*a(n-4)=0. - R. J. Mathar, Jan 24 2020
Previous Showing 91-100 of 190 results. Next