cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 72 results. Next

A179943 Triangle read by rows, antidiagonals of an array (r,k), r=(0,1,2,...), generated from 2 X 2 matrices of the form [1,r; 1,(r+1)].

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 8, 4, 1, 5, 15, 21, 5, 1, 6, 24, 56, 55, 6, 1, 7, 35, 115, 209, 144, 7, 1, 8, 48, 204, 551, 780, 377, 8, 1, 9, 63, 329, 1189, 2640, 2911, 987, 9, 1, 10, 80, 496, 2255, 6930, 12649, 10864, 2584, 10, 1, 11, 99, 711, 3905, 15456, 40391, 60605, 40545, 6765, 11
Offset: 0

Views

Author

Gary W. Adamson, Aug 07 2010

Keywords

Comments

Row sums = A179944: (1, 3, 7, 17, 47, 148, 518,...)
Row 1 = A001906, row 2 = A001353, row 3 = A004254, row 4 = A001109, row 5 = A004187, row 6 = A001090, row 7 = A018913, row 9 = A004189.
Let S_m(x) be the m-th Chebyshev S-polynomial, described by Wolfdieter Lang in his draft [Lang], defined by S_0(x)=1, S_1(x)=x and S_m(x)=x*S_{m-1}(x)-S_{m-2}(x) (m>1). Let A = (A(r,c)) denote the rectangular array (not the triangle). Then A(r,c) = S_c(r+2), r,c=0,1,2,.... - L. Edson Jeffery, Aug 14 2011
As to the array, (n+1)-th row is the INVERT transform of n-th row. - Gary W. Adamson, Jun 30 2013
If the array sequences are labeled (2,3,4,...) for the n-th sequence, convergence tends to (n + sqrt(n^2 - 4))/2. - Gary W. Adamson, Aug 20 2013

Examples

			First few rows of the array:
  1, 2,  3,   4,    5,    6,     7,...
  1, 3,  8,  21,   55,  144,   377,...
  1, 4, 15,  56,  209,  780,  2911,...
  1, 5, 24, 115,  551, 2640, 12649,...
  1, 6, 35, 204, 1189, 6930, 40391,...
Taking antidiagonals, we obtain triangle A179943:
  1;
  1, 2;
  1, 3, 3;
  1, 4, 8, 4;
  1, 5, 15, 21, 5;
  1, 6, 24, 56, 55, 6;
  1, 7, 35, 115, 209, 144, 7;
  1, 8, 48, 204, 551, 780, 377, 8;
  1, 9, 63, 329, 1189, 2640, 2911, 987, 9;
  1, 10, 80, 496, 2255, 6930, 12649, 10864, 2584, 10;
  1, 11, 99, 711, 3905, 15456, 40391, 60605, 40545, 6765, 11;
  1, 12, 120, 980, 6319, 30744, 105937, 235416, 290376, 151316, 17711, 12;
  ...
Examples: Row 1 of the array: (1, 3, 8, 21, 55, 144,...); 144 = term (1,5) of the array = term (2,1) of M^6; where M = the 2 X 2 matrix [1,1; 1,2] and M^6 = [89,144; 144,233].
Term (1,5) of the array = 144 = (r+2)*(term (1,4)) - (term (1,3)) = 3*55 - 21.
		

Crossrefs

Programs

  • Maple
    invtr:= proc(b) local a;
              a:= proc(n) option remember; local i;
              `if`(n<1, 1, add(a(n-i) *b(i-1), i=1..n+1)) end
            end:
    A:= proc(n) A(n):= `if`(n=0, k->k+1, invtr(A(n-1))) end:
    seq(seq(A(d-k)(k), k=0..d), d=0..10);  # Alois P. Heinz, Jul 17 2013
    # using observation by Gary W. Adamson
  • Mathematica
    a[, 0] = 0; a[, 1] = 1; a[r_, k_] := a[r, k] = (r+1)*a[r, k-1] - a[r, k-2]; Table[a[r-k+2, k], {r, 0, 10}, {k, 1, r+1}] // Flatten (* Jean-François Alcover, Feb 23 2015 *)

Formula

Antidiagonals of an array, (r,k), a(k) = (r+2)*a(k-1) - a*(k-2), r=0,1,2,... where (r,k) = term (2,1) in the 2 X 2 matrix [1,r; 1,r+1]^(k+1).
G.f. for row r of array: 1/(1 - (r+2)*x + x^2). - L. Edson Jeffery, Oct 26 2012

A290902 p-INVERT of the positive integers, where p(S) = 1 - 3*S.

Original entry on oeis.org

3, 15, 72, 345, 1653, 7920, 37947, 181815, 871128, 4173825, 19997997, 95816160, 459082803, 2199597855, 10538906472, 50494934505, 241935766053, 1159183895760, 5553983712747, 26610734667975, 127499689627128, 610887713467665, 2926938877711197, 14023806675088320
Offset: 0

Views

Author

Clark Kimberling, Aug 17 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A290890 for a guide to related sequences.

Examples

			s = (1,2,3,4,...), p(S) = 1-3*S;
S(x) = x + 2 x^2 + 3 x^3 + ... ;
p(S(x)) = 1 - 3(x + 2 x^2 + 3 x^3 + ...);
1/p(S(x)) = 1 + 3 x + 15 x^2 + 72 x^3 + ... ;
(-p(0) + 1/p(S(x)))/x = 3 + 15 x + 72 x^2 + ... ;
t(s) = (3, 15, 72, ...), with offset 0.
		

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x)^2; p = 1 - 3 s;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
    u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290902 *)
    u/3 (* A004254 shifted *)

Formula

G.f.: 3/(1 - 5 x + x^2).
a(n) = 5*a(n-1) - a(n-2).
a(n) = 3*A004254(n+1) for n >= 0.

A372817 Table read by antidiagonals: T(m,n) = number of 1-metered (m,n)-parking functions.

Original entry on oeis.org

1, 0, 2, 0, 3, 3, 0, 4, 8, 4, 0, 6, 21, 15, 5, 0, 8, 55, 56, 24, 6, 0, 12, 145, 209, 115, 35, 7, 0, 16, 380, 780, 551, 204, 48, 8, 0, 24, 1000, 2912, 2640, 1189, 329, 63, 9, 0, 32, 2625, 10868, 12649, 6930, 2255, 496, 80, 10, 0, 48, 6900, 40569, 60606, 40391, 15456, 3905, 711, 99, 11
Offset: 1

Views

Author

Spencer Daugherty, May 13 2024

Keywords

Examples

			For T(3,2) the 1-metered (3,2)-parking functions are 111, 121, 211, 212.
Table begins:
  1,  2,    3,     4,     5,      6,      7, ...
  0,  3,    8,    15,    24,     35,     48, ...
  0,  4,   21,    56,   115,    204,    329, ...
  0,  6,   55,   209,   551,   1189,   2255, ...
  0,  8,  145,   780,  2640,   6930,  15456, ...
  0, 12,  380,  2912, 12649,  40391, 105937, ...
  0, 16, 1000, 10868, 60606, 235416, 726103, ...
  ...
		

Crossrefs

Main diagonal is A097690 and first row of A372816.
First, second, and third diagonals above main are A097691, A342167, A342168.
Second column A029744. Second row A005563. Third row A242135.

Formula

T(m,n) = (n*(n+sqrt(n^2 - 4))-2)/(n*(n+sqrt(n^2 - 4))-4)*((n+sqrt(n^2-4))/2)^m + (n*(n-sqrt(n^2 - 4))-2)/(n*(n-sqrt(n^2 - 4))-4)*((n-sqrt(n^2-4))/2)^m.
T(m,n) = n*T(m-1,n) - T(m-2,n) with T(0,n) = 1.

A073134 Table by antidiagonals of T(n,k)=n*T(n,k-1)-T(n,k-2) starting with T(n,1)=1.

Original entry on oeis.org

1, 1, 1, 0, 2, 1, -1, 3, 3, 1, -1, 4, 8, 4, 1, 0, 5, 21, 15, 5, 1, 1, 6, 55, 56, 24, 6, 1, 1, 7, 144, 209, 115, 35, 7, 1, 0, 8, 377, 780, 551, 204, 48, 8, 1, -1, 9, 987, 2911, 2640, 1189, 329, 63, 9, 1, -1, 10, 2584, 10864, 12649, 6930, 2255, 496, 80, 10, 1, 0, 11, 6765, 40545, 60605, 40391, 15456, 3905, 711, 99, 11, 1, 1, 12
Offset: 1

Views

Author

Henry Bottomley, Jul 16 2002

Keywords

Examples

			Rows start:
  1, 1,  0, -1,  -1,   0,    1, ...;
  1, 2,  3,  4,   5,   6,    7, ...;
  1, 3,  8, 21,  55, 144,  377, ...;
  1, 4, 15, 56, 209, 780, 2911, ...;
  ...
		

Crossrefs

Rows include A010892, A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190. Columns include (with some gaps) A000012, A000027, A005563, A057722.
Cf. A094954.

Programs

Formula

T(n, k) = A073133(n, k)-2*A073135(n, k-2).
T(n, k) = Sum_{j=0..k-1} A049310(k-1, j)*n^j.

A092499 Chebyshev polynomials S(n-1,21) with Diophantine property.

Original entry on oeis.org

0, 1, 21, 440, 9219, 193159, 4047120, 84796361, 1776676461, 37225409320, 779956919259, 16341869895119, 342399310878240, 7174043658547921, 150312517518628101, 3149388824232642200, 65986852791366858099
Offset: 0

Views

Author

Rainer Rosenthal, Apr 05 2004

Keywords

Comments

Sequence R_21: Starts with 0,1,21 and satisfies A*C=B^2-1 for successive A,B,C.
The natural numbers a(n)=n satisfy the recurrence a(n-1)*a(n+1)=a(n)^2-1. Let R_r denote the sequence starting with 0,1,r and with this recurrence. We see that R_2 = "the natural numbers" and we find R_3 = A001906. These R_r form a "family" of sequences, which coincides with the m-family (r=m-2, n -> n+1) provided by Wolfdieter Lang (see A078368). This sequence R_21 is strongly related to A041833, which gives the denominators in the continued fraction of sqrt(437).
All positive integer solutions of Pell equation b(n)^2 - 437*a(n)^2 = +4 together with b(n)=A097777(n), n>=0.
For n>=2, a(n) equals the permanent of the (n-1)X(n-1) tridiagonal matrix with 21's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,20}. - Milan Janjic, Jan 25 2015

Examples

			a(3)=440 because a(1)*440 = a(2)^2-1.
		

Crossrefs

Cf. R_3=A001906, R_4=A001353, R_5=A004254, R_6=A001109, R_7=A004187, R_8=A001090, R_9=A018913, R_10=A004189, R_11=A004190, R_12=A004191, R_13=A078362, R_14=A007655, R_15=A078364, R_16=A077412, R_17=A078366, R_18=A049660, R_19=A078368, R_20=A075843, R_21=this, sequence, R_22=A077421. See also A041219 and A041917.

Programs

  • Mathematica
    LinearRecurrence[{21,-1},{0,1},30] (* Harvey P. Dale, Apr 23 2015 *)
  • Sage
    [lucas_number1(n,21,1) for n in range(0,20)] # Zerinvary Lajos, Jun 25 2008

Formula

a(0)=0, a(1)=1, a(2)=21 and a(n-1)*a(n+1) = a(n)^2-1
a(n) = S(n-1, 21)=U(n-1, 21/2) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the 2nd kind, A049310. S(-1, x)= 0 = U(-1, x).
a(n) = S(2*n-1, sqrt(23))/sqrt(23), n>=1.
a(n) = 21*a(n-1)-a(n-2), n >= 1; a(0)=0, a(1)=1.
a(n) = (ap^n-am^n)/(ap-am) with ap := (21+sqrt(437))/2 and am := (21-sqrt(437))/2.
G.f.: x/(1-21*x+x^2).
a(n+1) = Sum_{k, 0<=k<=n} A101950(n,k)*20^k. - Philippe Deléham, Feb 10 2012
Product {n >= 1} (1 + 1/a(n)) = 1/19*(19 + sqrt(437)). - Peter Bala, Dec 23 2012
Product {n >= 2} (1 - 1/a(n)) = 1/42*(19 + sqrt(437)). - Peter Bala, Dec 23 2012

Extensions

Extension, Chebyshev and Pell comments from Wolfdieter Lang, Aug 31 2004
Corrected by T. D. Noe, Nov 07 2006

A125078 Fifth in an infinite set of generalized Pascal's triangles, with trigonometric properties.

Original entry on oeis.org

1, 1, 4, 1, 5, 19, 1, 9, 24, 91, 1, 10, 63, 115, 436, 1, 14, 73, 397, 551, 2089, 1, 15, 132, 470, 2358, 2640, 10009, 1, 19, 147, 1043, 2828, 13482, 12649, 47956, 1, 20, 226, 1190, 7441, 16310, 75061, 60605, 229771
Offset: 1

Views

Author

Gary W. Adamson, Nov 18 2006

Keywords

Comments

The triangle is the fifth in an infinite set of generalized Pascal's triangles constrained by two properties: row sums = powers of N and upward sloping diagonals solve for N + 2*Cos 2Pi/Q. Row sums are powers of 5. Right border (1, 4, 19, 91, 436...) = A004253. Next to right border (1, 5, 24, 115...) = A004254.

Examples

			First few rows of the triangle are:
1;
1, 4;
1, 5, 19;
1, 9, 24, 91;
1, 10, 63, 115, 436;
1, 14, 73, 397, 551, 2089;
1, 15, 132, 470, 2358, 2640, 10009;
...
The upward sloping diagonal (1, 14, 63, 91) is derived from the characteristic polynomial x^3 - 14x^2 + 63x - 91 and relates to the Heptagon (Q=7) since a root = 6.24697960...= 5 + 2*Cos 2Pi/7. The corresponding matrix is [4, 1, 0; 1, 5, 1; 0, 1, 5]. The next upward sloping diagonal (1, 15, 73, 115) relates to the Octagon (Q=8) since a root = 6.41421356... = 5 + 2*Cos 2Pi/8. The corresponding matrix is [5, 1, 0; 1, 5, 1; 0, 1, 5].
		

Crossrefs

Formula

Upward sloping diagonals are derived from interleaved characteristic polynomials of two types of matrices, relating to odd and even polygons. Matrices with an eigenvalue 5 + 2*Cos 2Pi/Q, Q is odd, are of the form: all 1's in the super and subdiagonals and 4,5,5,5... in the main diagonal. Matrices (Q is even) are of the form: all 1's in the super and subdiagonals and 5,5,5... in the main diagonal.

A136210 Numerators in continued fraction [0; 1, 3, 1, 3, 1, 3, ...].

Original entry on oeis.org

1, 3, 4, 15, 19, 72, 91, 345, 436, 1653, 2089, 7920, 10009, 37947, 47956, 181815, 229771, 871128, 1100899, 4173825, 5274724, 19997997, 25272721, 95816160, 121088881, 459082803, 580171684, 2199597855, 2779769539, 10538906472
Offset: 1

Views

Author

Gary W. Adamson, Dec 21 2007

Keywords

Comments

A136210(n)/A136211(n) tends to 0.7912878474... = (sqrt(21) - 3)/2 = continued fraction [0; 1, 3, 1, 3, 1, 3, ...] = the inradius of a right triangle with hypotenuse 5, legs 2 and sqrt(21).
This is a strong divisibility sequence, that is, GCD(a(n),a(m)) = a(GCD(n,m)) for all natural numbers n and m. - Peter Bala, May 14 2014

Examples

			a(4) = 15 = 3*a(3) + a(2) = 3*4 + 3.
a(5) = 19 = a(4) + a(3) = 15 + 4.
T^3 = [19, 72; 24, 91], where [19, 72] = [a(5), a(6)]. [24, 91] = [A136211(5), A136211(6)].
G.f. = x + 3*x^2 + 4*x^3 + 15*x^4 + 19*x^5 + 72*x^6 + 91*x^7 + 345*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a = {1, 3}; Do[If[EvenQ[n], AppendTo[a, 3*a[[ -1]] + a[[ -2]]], AppendTo[a, a[[ -1]] + a[[ -2]]]], {n, 3, 30}]; a (* Stefan Steinerberger, Dec 31 2007 *)
    a[n_] := FromContinuedFraction[ Join[{0}, 3 - 2*Array[Mod[#, 2]&, n]]] // Numerator; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, May 15 2014 *)
  • PARI
    {a(n) = (-1)^((n+1) * (n<0)) * polcoeff( x * (1 + 3*x - x^2) / (1 - 5*x^2 + x^4) + x * O(x^abs(n)), abs(n))}; /* Michael Somos, May 15 2014 */

Formula

a(0) = 0, a(1) = 1, a(2n) = 3*a(2n-1) + a(2n-2); a(2n-1) = a(2n-2) + a(2n-3). Given the 2 X 2 matrix [1, 3; 1, 4] = T, [a(2n-1), a(2n)] = top row of T^n.
g.f.: x*(1+3*x-x^2)/(1-5*x^2+x^4). - Colin Barker, Jan 04 2012
a(-n) = -(-1)^n * a(n). a(2*n - 1) = A004253(n). a(2*n) = 3 * A004254(n). - Michael Somos, May 15 2014
a(n+1) - a(n-1) = a(n) * (2 - (-1)^n) for all n in Z. - Michael Somos, May 15 2014

Extensions

More terms from Stefan Steinerberger, Dec 31 2007

A221365 The simple continued fraction expansion of F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) when x = 1/2*(5 - sqrt(21)).

Original entry on oeis.org

1, 3, 1, 21, 1, 108, 1, 525, 1, 2523, 1, 12096, 1, 57963, 1, 277725, 1, 1330668, 1, 6375621, 1, 30547443, 1, 146361600, 1, 701260563, 1, 3359941221, 1, 16098445548, 1, 77132286525, 1, 369562987083, 1, 1770682648896, 1
Offset: 0

Views

Author

Peter Bala, Jan 15 2013

Keywords

Comments

The function F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) is analytic for |x| < 1. When x is a quadratic irrational of the form x = 1/2*(N - sqrt(N^2 - 4)), N an integer greater than 2, the real number F(x) has a predictable simple continued fraction expansion. The first examples of these expansions, for N = 2, 4, 6 and 8, are due to Hanna. See A174500 through A175503. The present sequence is the case N = 5. See also A221364 (N = 3), A221366 (N = 7) and A221367 (N = 9).
If we denote the present sequence by [1, c(1), 1, c(2), 1, c(3), ...] then for k = 1, 2, ..., the simple continued fraction expansion of F((1/2*(5 - sqrt(21)))^k) is given by the sequence [1; c(k), 1, c(2*k), 1, c(3*k), 1, ...].

Examples

			F(1/2*(5 - sqrt(21))) = 1.25274 83510 08359 27965 ... = 1 + 1/(3 + 1/(1 + 1/(21 + 1/(1 + 1/(108 + 1/(1 + 1/(525 + ...))))))).
F((1/2*(5 - sqrt(21)))^2) = 1.04545 84663 16495 30047 ... = 1 + 1/(21 + 1/(1 + 1/(525 + 1/(1 + 1/(12096 + 1/(1 + 1/(277725 + ...))))))).
F((1/2*(5 - sqrt(21)))^3) = 1.00917 43188 83793 73068 ... = 1 + 1/(108 + 1/(1 + 1/(12096 + 1/(1 + 1/(1330668 + 1/(1 + 1/(146361600 + ...))))))).
		

Crossrefs

Cf. A004254, A030221, A054493, A174500 (N = 4), A221364 (N = 3), A221366 (N = 7), A221369 (N = 9).

Programs

  • Mathematica
    LinearRecurrence[{0,6,0,-6,0,1},{1,3,1,21,1,108},40] (* Harvey P. Dale, Jun 06 2023 *)

Formula

a(2*n-1) = (1/2*(5 + sqrt(21)))^n + (1/2*(5 - sqrt(21)))^n - 2 = 3*A054493(n); a(2*n) = 1.
a(4*n+1) = 3*(A030221(n))^2; a(4*n-1) = 21*(A004254(n))^2.
a(n) = 6*a(n-2)-6*a(n-4)+a(n-6). G.f.: -(x^4+3*x^3-5*x^2+3*x+1) / ((x-1)*(x+1)*(x^4-5*x^2+1)). - Colin Barker, Jan 20 2013

A230338 Recurrence equation: a(0) = 1 and a(n) = a(n-1)*sqrt(21*a(n-1)^2 + 4) for n >= 1.

Original entry on oeis.org

1, 5, 115, 60605, 16831644835, 1298263252133919638045, 7723873922612696850892381990249713732303715, 273388347343560518533856033712658350781293745092679040607342582493129736504927611387805
Offset: 0

Views

Author

Peter Bala, Oct 30 2013

Keywords

Comments

For integer N, the recurrence equation a(n) = a(n-1)*sqrt((N^2 - 4)*a(n-1)^2 + 4) for n >= 1, with starting value a(0) = 1, produces an integer sequence. The present sequence is the case N = 5. Cf. A000079 (case N = 2), A058635 (case N = 3) and A071579 (case N = 4).
Sequence of numerators in the Engel series representation of 1/2*(7 - sqrt(21)) = 1 + 1/5 + 1 /115 + 1/60605 + .... The corresponding Engel expansion is A003487.
The sequence also has a description as a Pierce expansion of the quadratic irrational 1/2*(5 - sqrt(21)) to the base b := 1/sqrt(21) (see A058635 for a definition of this term).
The associated Pierce series representation of 1/2*(5 - sqrt(21)) to the base b begins 1/2*(5 - sqrt(21)) = b/1 - b^2/(1*5) + b^3/(1*5*115) - b^4/(1*5*115*60605) + ....
More generally, for n >= 0, the sequence [a(n), a(n+1), a(n+2), ...] gives a Pierce expansion of ( 1/2*(5 - sqrt(21)) )^(2^n) to the base b = 1/sqrt(21). Some examples are given below.

Examples

			Let b = 1/sqrt(21) and x = 1/2*(5 - sqrt(21)). We have the following Pierce expansions to base b:
x = b/1 - b^2/(1*5) + b^3/(1*5*115) - b^4/(1*5*115*60605) + b^5/(1*5*115*60605*16831644835) - ....
x^2 = b/5 - b^2/(5*115) + b^3/(5*115*60605) - b^4/(5*115*60605*16831644835) + ....
x^4 = b/115 - b^2/(115*60605) + b^3/(115*60605*16831644835) - ....
x^8 = b/60605 - b^2/(60605*16831644835) + ....
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n - 1]*Sqrt[21 a[n - 1]^2 + 4]; a[0] = 1; Array[a, 8, 0] (* Robert G. Wilson v, Mar 19 2014 *)
    a[ n_] := If[ n < 0, 0, ChebyshevU[2^n - 1, 5/2]]; (* Michael Somos, Dec 06 2016 *)
  • PARI
    a(n) = if( n<0, 0, imag( (5 + quadgen(84))^2^n) / 2^(2^n - 1)); /* Michael Somos, Dec 06 2016 */

Formula

a(n) = 1/sqrt(21)*( alpha^(2^n) - (1/alpha)^(2^n) ), where alpha = 1/2*(5 + sqrt(21)).
a(n) = product {k = 0..n-1} A003487(k).
Defining recurrence equation:
a(0) = 1 and a(n) = a(n-1)*sqrt(21*a(n-1)^2 + 4) for n >= 1.
Other recurrence equations:
a(0) = 1, a(1) = 5 and a(n)/a(n-1) = (a(n-1)/a(n-2))^2 - 2 for n >= 2.
a(0) = 1, a(1) = 5 and a(n)/a(n-1) = 21*a(n-2)^2 + 2 for n >= 2.
a(n) = A004254(2^n). - Michael Somos, Dec 06 2016

A334673 a(n) = 23*a(n-1) - a(n-2) + 1 for n > 1, a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 24, 552, 12673, 290928, 6678672, 153318529, 3519647496, 80798573880, 1854847551745, 42580695116256, 977501140122144, 22439945527693057, 515141245996818168, 11825808712399124808, 271478459139183052417, 6232178751488811080784, 143068632825103471805616
Offset: 0

Views

Author

Francesca Arici, Sep 11 2020

Keywords

Crossrefs

Cf. A004253, A004254, A030221, A097778 (first differences).
Cf. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).

Programs

  • Mathematica
    CoefficientList[Series[x/((1 - x) (x^2 - 23 x + 1)), {x, 0, 18}], x] (* Michael De Vlieger, Apr 07 2021 *)

Formula

a(n) = A004254(n)*A004254(n+1)/5 = A160695(n+1)/5.
G.f.: x/((1-x)*(x^2-23*x+1)). - Alois P. Heinz, Sep 11 2020
From Klaus Purath, Jun 18 2025: (Start)
a(n) = (A004253(n+1)^2 - 1) / 15.
a(n) = (A030221(n)^2 - 1) / 35.
a(n) + a(n+1) = A004253(n+1)^2. (End)

Extensions

a(13)-a(14) corrected and more terms added by Alois P. Heinz, Sep 11 2020
Previous Showing 51-60 of 72 results. Next