cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A298799 Expansion of (1-27*x)^(-1/9).

Original entry on oeis.org

1, 3, 45, 855, 17955, 398601, 9167823, 216098685, 5186368440, 126201632040, 3104560148184, 77049538223112, 1926238455577800, 48452305767226200, 1225151160114148200, 31118839466899364280, 793530406405933789140, 20305042752151835192700
Offset: 0

Views

Author

Seiichi Manyama, Jun 22 2018

Keywords

Comments

Conjecture: a(p*n) == a(n) (mod p^2) for prime p == 1 (mod 9) and all positive integers n except those n of the form n = m*p + k for 0 <= m <= (p-1)/9 and 1 <= k <= (p-1)/9. Cf. A034171, A004981 and A004982. - Peter Bala, Dec 23 2019

Crossrefs

(1-b*x)^(-1/A003557(b)): A000984 (b=4), A004981 (b=8), A004987 (b=9), A098658 (b=12), A224881 (b=16), A034688 (b=25), this sequence (b=27), A004993 (b=36), A034835 (b=49).

Programs

  • GAP
    List([0..20],n->(3^n/Factorial(n))*Product([0..n-1],k->9*k+1)); # Muniru A Asiru, Jun 23 2018
  • Maple
    seq(coeff(series((1-27*x)^(-1/9), x, n+1), x, n), n=0..20); # Muniru A Asiru, Jun 23 2018
    # Alternative:
    A298799 := n -> (-27)^n*binomial(-1/9, n):
    seq(A298799(n), n=0..17); # Peter Luschny, Dec 26 2019
  • PARI
    N=20; x='x+O('x^N); Vec((1-27*x)^(-1/9))
    

Formula

a(n) = 3^n/n! * Product_{k=0..n-1} (9*k + 1) for n > 0.
a(n) ~ 3^(3*n) / (Gamma(1/9) * n^(8/9)). - Vaclav Kotesovec, Jun 23 2018
From Peter Luschny, Dec 26 2019: (Start)
a(n) = (-27)^n*binomial(-1/9, n).
a(n) = n! * [x^n] hypergeom([1/9], [1], 27*x). (End)
D-finite with recurrence: n*a(n) +3*(-9*n+8)*a(n-1)=0. - R. J. Mathar, Jan 20 2020

A186284 Self-convolution square equals A127776.

Original entry on oeis.org

1, 2, 48, 1704, 71490, 3291780, 160844160, 8189867280, 429832053840, 23088359467040, 1263134996327680, 70138971602098560, 3942799810867610280, 223942062435751452240, 12831882367225056387840, 740872398293620831990080
Offset: 0

Views

Author

Paul D. Hanna, Feb 16 2011

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 48*x^2 + 1704*x^3 + 71490*x^4 + 3291780*x^5 +...
Related expansions.
The g.f. of A127776 equals A(x)^2:
A(x)^2 = 1 + 4*x + 100*x^2 + 3600*x^3 + 152100*x^4 + 7033104*x^5 +...+ A004981(n)^2*x^n +...
The g.f. of A002897 equals A(x)^4:
A(x)^4 = 1 + 8*x + 216*x^2 + 8000*x^3 + 343000*x^4 + 16003008*x^5 +...+ A000984(n)^3*x^n +...
The g.f. of A004981 begins:
1/(1-8*x)^(1/4) = 1 + 2*x + 10*x^2 + 60*x^3 + 390*x^4 + 2652*x^5 +...
where A004981(n) = (2^n/n!)*Product_{k=0..n-1} (4k + 1).
The g.f. of A000984 begins:
1/(1-4*x)^(1/2) = 1 + 2*x + 6*x^2 + 20*x^3 + 70*x^4 + 252*x^5 +...
where A000984(n) = (2n)!/(n!)^2 forms the central binomial coefficients.
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Sqrt[Hypergeometric2F1[ 1/4, 1/4, 1, 64*x]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 10 2018 *)
  • PARI
    {a(n)=local(A004981=1/(1-8*x+x*O(x^n))^(1/4),A=sum(m=0,n,polcoeff(A004981,m)^2*x^m+x*O(x^n))^(1/2));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A000984=1/(1-4*x+x*O(x^n))^(1/2),A=sum(m=0,n,polcoeff(A000984,m)^3*x^m+x*O(x^n))^(1/4));polcoeff(A,n)}

Formula

Self-convolution 4th power equals A002897.
G.f.: sqrt( K(k)/(Pi/2) ) in powers of (kk'/4)^2, where K(k) is complete elliptic integral of first kind evaluated at modulus k. [From a formula by Michael Somos in A002897]
G.f.: sqrt( 1/AGM(1, (1-16x)^(1/2)) ) in powers of x(1-16x) where AGM() is the arithmetic-geometric mean. [From a formula by Michael Somos in A004981]
a(n) ~ Pi^(3/4) * 2^(6*n - 1/2) / (Gamma(1/4)^3 * n^(3/2)). - Vaclav Kotesovec, Apr 10 2018

A209200 G.f.: (1-4*x)^(-1/2) * (1-8*x)^(-1/4).

Original entry on oeis.org

1, 4, 20, 112, 680, 4384, 29536, 205440, 1462368, 10587520, 77633920, 574845440, 4289409280, 32206976000, 243074083840, 1842511532032, 14018197145088, 106996519311360, 818973463721984, 6284217844736000, 48327723087278080, 372397083591557120
Offset: 0

Views

Author

Paul D. Hanna, Mar 06 2012

Keywords

Comments

Equals the convolution of sequences A000984 and A004981.
The sequences A000984 and A004981 are related by the identity:
Sum_{n>=0} A000984(n)^3 *x^n = ( Sum_{n>=0} A004981(n)^2 *x^n )^2.

Examples

			G.f.: A(x) = 1 + 4*x + 60*x^2 + 1200*x^3 + 27300*x^4 + 668304*x^5 +...
This sequence equals the convolution of the sequences:
A000984 = [1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, ...], and
A004981 = [1, 2, 10, 60, 390, 2652, 18564, 132600, 961350, ...].
Related sequences:
A^2: [1, 8, 56, 384, 2656, 18688, 133888, 974848, 7194112, ...],
A^4: [1, 16, 176, 1664, 14592, 122880, 1011712, 8224768, ...].
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-4*x)^(-1/2)*(1-8*x)^(-1/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
  • PARI
    {a(n)=polcoeff((1-4*x +x*O(x^n))^(-1/2)*(1-8*x +x*O(x^n))^(-1/4),n)}
    
  • PARI
    {A000984(n)=polcoeff((1-4*x +x*O(x^n))^(-1/2),n)}
    {A004981(n)=polcoeff((1-8*x +x*O(x^n))^(-1/4),n)}
    {a(n)=sum(k=0,n,A000984(n-k)*A004981(k))}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} A000984(n-k)*A004981(k).
Recurrence: n*a(n) = 4*(3*n-2)*a(n-1) - 8*(4*n-5)*a(n-2). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ Gamma(3/4)*8^n/(Pi*n^(3/4)). - Vaclav Kotesovec, Oct 20 2012

A349844 Expansion of -(1 - 16*x)^(1/2) / (1 - 8*x)^(1/4).

Original entry on oeis.org

-1, 6, 38, 340, 3482, 38740, 457500, 5654440, 72412410, 953696900, 12844323828, 176130113432, 2450987760676, 34524885571400, 491309242342264, 7052495781361488, 101992452504973882, 1484590294804096356, 21732695236734410500, 319745609409940857144
Offset: 0

Views

Author

Jianing Song, Dec 01 2021

Keywords

Comments

Let b(n) = -a(n)/(-8)^n, {b(n)} = {1, 3/4, -19/32, 85/128, -1741/2048, 9685/8192, -114375/65536, ...}, then Sum_{n>=0} b(n) is clearly divergent since Sum_{n>=0} a(n)*x^n has radius of convergence 1/16. Let c(n) = -A349846(n)/(-4)^n, {c(n)} = {1, 3/2, -5/8, 7/16, -45/128, 77/256, -273/1024, ...}, then Sum_{n>=1} c(n) is the Cauchy product of Sum_{n>=0} b(n) with itself. Since |c(n)| ~ 1/sqrt(Pi*n) and |c(n+1)|/|c(n)| = ((2*n-1)*(2*n+3)) / ((2*n+1)*(2*n+2)) < 1, Sum_{n>=0} c(n) is conditionally convergent by Leibniz's criterion. {b(n)} serves as an example such that the Cauchy product of a divergent series with itself can be conditionally convergent.

Examples

			Let C(n) denote the Catalan numbers, P = A004981.
a(0) = -P(0) = -1;
a(1) = 2^3 * C(0) * P(0) - P(1) = 6;
a(2) = 2^3 * C(0) * P(1) + 2^5 * C(1) * P(0) - P(2) = 38;
a(3) = 2^3 * C(0) * P(2) + 2^5 * C(1) * P(1) + 2^7 * C(2) * P(0) - P(3) = 340;
a(4) = 2^3 * C(0) * P(3) + 2^5 * C(1) * P(2) + 2^7 * C(2) * P(1) + 2^9 * C(3) * P(0) - P(4) = 3482.
		

Crossrefs

Programs

  • PARI
    C(n) = binomial(2*n,n)/(n+1)
    a(n) = sum(k=0, n-1, 2^(2*k+3) * C(k) * A004981(n-1-k)) - A004981(n) \\ See A004981 for its program

Formula

a(n) = (Sum_{k=0..n-1} 2^(2*k+3) * CatalanNumber(k) * A004981(n-1-k)) - A004981(n).

A349845 Expansion of -(1 - 16*x)^(1/2) / (1 + 8*x)^(1/4).

Original entry on oeis.org

-1, 10, 6, 332, 1498, 29964, 269660, 4066456, 48190842, 679524828, 8993585460, 126419889960, 1757062172580, 25004701186680, 356647387079160, 5145713721249072, 74607994412294970, 1089344167433473788, 15981504546211353156, 235635552851036269704
Offset: 0

Views

Author

Jianing Song, Dec 01 2021

Keywords

Comments

Let b(n) = -a(n)/8^n, {b(n)} = {1, -5/4, -3/32, -83/128, -749/2048, -7491/8192, -67415/65536, ...}, then Sum_{n>=0} b(n) is clearly divergent since Sum_{n>=0} a(n)*x^n has radius of convergence 1/16. Let c(n) = A349847(n)/(-4)^n, {c(n)} = {1, -5/2, 11/8, -17/16, 115/128, -203/256, 735/1024, ...}, then Sum_{n>=0} c(n) is the Cauchy product of Sum_{n>=1} b(n) with itself. Since |c(n)| ~ 3/sqrt(Pi*n) and |c(n+1)|/|c(n)| = ((6*n+5)*(2*n-1)) / ((6*n-1)*(2*n+2)) < 1, Sum_{n>=0} c(n) is conditionally convergent by Leibniz's criterion. {b(n)} serves as an example such that the Cauchy product of a divergent series with itself can be conditionally convergent.

Examples

			Let C(n) denote the Catalan numbers, P = A004981.
a(0) = -P(0) = -1;
a(1) = 2^3 * C(0) * P(0) + P(1) = 10;
a(2) = -2^3 * C(0) * P(1) + 2^5 * C(1) * P(0) - P(2) = 6;
a(3) = 2^3 * C(0) * P(2) - 2^5 * C(1) * P(1) + 2^7 * C(2) * P(0) + P(3) = 332;
a(4) = -2^3 * C(0) * P(3) + 2^5 * C(1) * P(2) - 2^7 * C(2) * P(1) + 2^9 * C(3) * P(0) - P(4) = 1498.
		

Crossrefs

Programs

  • PARI
    C(n) = binomial(2*n,n)/(n+1)
    a(n) = sum(k=0, n-1, (-1)^(n-1-k) * 2^(2*k+3) * C(k) * A004981(n-1-k)) + (-1)^(n-1) * A004981(n) \\ See A004981 for its program

Formula

a(n) = (Sum_{k=0..n-1} (-1)^(n-1-k) * 2^(2*k+3) * CatalanNumber(k) * A004981(n-1-k)) + (-1)^(n-1) * A004981(n).

A383600 Expansion of 1/( (1-x)^3 * (1-9*x) )^(1/4).

Original entry on oeis.org

1, 3, 15, 97, 699, 5313, 41689, 334215, 2721411, 22423737, 186497325, 1562826195, 13178010405, 111700773135, 951026829255, 8128169277897, 69701329848051, 599462375836185, 5169038197383789, 44674793959777443, 386916485124220929, 3357265884164614707
Offset: 0

Views

Author

Seiichi Manyama, May 01 2025

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( 1/( (1-x)^3 * (1-9*x) )^(1/4))); // Vincenzo Librandi, May 05 2025
  • Mathematica
    Table[Sum[(-8)^(k)* Binomial[-1/4,k]* Binomial[n,k],{k,0,n}],{n,0,22}] (* Vincenzo Librandi, May 05 2025 *)
  • PARI
    a(n) = sum(k=0, n, (-8)^k*binomial(-1/4, k)*binomial(n, k));
    

Formula

a(n) = Sum_{k=0..n} (-8)^k * binomial(-1/4,k) * binomial(n,k).
n*a(n) = (10*n-7)*a(n-1) - 9*(n-1)*a(n-2) for n > 1.
a(n) ~ 3^(2*n + 3/2) / (Gamma(1/4) * 2^(9/4) * n^(3/4)). - Vaclav Kotesovec, May 02 2025
a(n) = hypergeom([1/4, -n], [1], -8). - Stefano Spezia, May 05 2025

A122882 Array of T(n,m)=1*5*...*(4n-3)*3*7*...*(4m-1)*2^(n+m)/(n+m)! by antidiagonals.

Original entry on oeis.org

1, 2, 6, 10, 6, 42, 60, 20, 28, 308, 390, 90, 70, 154, 2310, 2652, 468, 252, 308, 924, 17556, 18564, 2652, 1092, 924, 1540, 5852, 134596, 132600, 15912, 5304, 3432, 3960, 8360, 38456, 1038312, 961350, 99450, 27846, 14586, 12870, 18810, 48070
Offset: 0

Views

Author

Michael Somos, Sep 16 2006

Keywords

Comments

T(n,m)=2*A(m,n) in Problem A10527 Solution.

Examples

			       1        6       42      308     2310    17556 ...
       2        6       28      154      924     5852 ...
      10       20       70      308     1540     8360 ...
      60       90      252      924     3960    18810 ...
     390      468     1092     3432    12870    54340 ...
    2652     2652     5304    14586    48620   184756 ...
   18564    15912    27846    68068   204204   705432 ...
  132600    99450   154700   340340   928200  2939300 ...
  961350   640900   897260  1794520  4486300 13113800 ...
 7049900  4229940  5383560  9869860 22776600 61822200 ...
		

Crossrefs

Cf. A004981(n)=T(n, 0), A004982(n)=T(0, n), A001448(n)=T(n, n).

Programs

  • Maple
    A122882 := proc(n,m)
        mul(4*i-3,i=1..n)*mul(4*i-1,i=1..m) ;
        %*2^(n+m)/(n+m)! ;
    end proc: # R. J. Mathar, Sep 24 2021
  • PARI
    {T(n,m)=if(n<0||m<0, 0, 2^(n+m)/(n+m)!*prod(k=1, m, 4*k-1)*prod(k=1, n, 4*k-3))}

Formula

T(n,m) = T(n,m-1)*(8*m-2)/(n+m) = T(n-1,m)*(8*n-6)/(n+m). T(0,0) = 1.

A209358 G.f.: (1-4*x)^(-1/4) * (1-8*x)^(-1/8).

Original entry on oeis.org

1, 2, 8, 40, 228, 1416, 9312, 63648, 446760, 3195728, 23179840, 169929280, 1256234720, 9350462400, 69993150720, 526455847680, 3976132184160, 30138433333440, 229168000121600, 1747455531216640, 13358199405416320, 102345801274115840, 785740341422453760
Offset: 0

Views

Author

Paul D. Hanna, Mar 06 2012

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 8*x^2 + 40*x^3 + 228*x^4 + 1416*x^5 + 9312*x^6 +...
such that the square of the g.f. A(x) equals the g.f. of A209200:
A(x)^2 = 1 + 4*x + 20*x^2 + 112*x^3 + 680*x^4 + 4384*x^5 + 29536*x^6 +...
Sequence A209200 equals the convolution of the sequences:
A000984 = [1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, ...],
A004981 = [1, 2, 10, 60, 390, 2652, 18564, 132600, 961350, ...].
		

Crossrefs

Programs

  • Magma
    I:=[2,8]; [1] cat [n le 2 select I[n] else (2*(6*n-5)*Self(n-1) - 4*(8*n-13)*Self(n-2))/n: n in [1..30]]; // G. C. Greubel, Jan 03 2018
  • Mathematica
    CoefficientList[Series[(1-4*x)^(-1/4)*(1-8*x)^(-1/8), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
  • PARI
    {a(n)=polcoeff((1-4*x +x*O(x^n))^(-1/4)*(1-8*x +x*O(x^n))^(-1/8), n)}
    for(n=0,30,print1(a(n),", "))
    

Formula

Equals the self-convolution square root of A209200, which equals the convolution of sequences A000984 and A004981.
Recurrence: n*a(n) = 2*(6*n-5)*a(n-1) - 4*(8*n-13)*a(n-2). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ Gamma(7/8)*2^(1/4)*8^n*sin(Pi/8)/(n^(7/8)*Pi). - Vaclav Kotesovec, Oct 20 2012

A275607 a(n) = 2*12^n*Gamma(n+1/2)*(n+1)/(sqrt(Pi)*Gamma(n+3)).

Original entry on oeis.org

1, 4, 27, 216, 1890, 17496, 168399, 1667952, 16888014, 173997720, 1818276174, 19225409616, 205299909828, 2210922105840, 23984556773175, 261854925711840, 2874948871877910, 31722346066169880, 351589335566716170, 3912422681494285200, 43694647856506630620, 489597172255515289680
Offset: 0

Views

Author

Karol A. Penson, Nov 14 2016

Keywords

Comments

In reference of K. Szymanski et al. the function g(x) from the Eq.(4.6) satisfies the equality g(x/4)/4 = W(x) where W(x) is the weight function of the integral representation, see below.

Crossrefs

Programs

  • Maple
    a := n -> (2^(2*n+1)*3^n*(n+1)*GAMMA(n+1/2))/(sqrt(Pi)*GAMMA(n+3)):
    seq(a(n), n=0..21); # Peter Luschny, Nov 14 2016
  • Mathematica
    g[z_] :=  E^z (BesselI[0,z] - (1-1/z) BesselI[1,z])
    Table[CoefficientList[2/3 Series[g[6z], {z,0,21}],z]] Range[0, 21]! //Flatten (* Peter Luschny, Nov 14 2016 *)
    Table[ 2*12^n*(n + 1)*Gamma[n + 1/2]/(Sqrt[Pi]*Gamma[n + 3]), {n,0,100}] (* G. C. Greubel, Jan 13 2017 *)
  • PARI
    a(n)=2*12^n*gamma(n+1/2)*(n+1)\/(sqrt(Pi)*(n+2)!) \\ Charles R Greathouse IV, Nov 14 2016
    
  • PARI
    a(n)=2*3^n*binomial(2*n+1,n-1)*(n+1)/(2*n+1)/n \\ Charles R Greathouse IV, Nov 14 2016

Formula

O.g.f: (1/54)*(1-(6*z+1)*sqrt(1-12*z))/z^2;
E.g.f.(in Maple notation): (1/9)*exp(6*z)*(6*z*(BesselI(0,6*z)-BesselI(1,6*z))+ BesselI(1,6*z))/z;
Recurrence: (-12*n^2-54*n-54)*a(n+1)+(n^2+6*n+8)*a(n+2)=0, n=0,1..., for the initial values a(0)=1, a(1)=4.
Integral representation as the n-th Hausdorff moment of the positive function W(x) on the segment x=(0,12), i.e., a(n) = Integral_{x=0..12} x^n*W(x) dx, where W(x) = (1/27)*sqrt(12-x)*(3+(1/2)*x)/(Pi*sqrt(x)). This representation is unique.
a(n) ~ 2^(2*n+1)*3^n/(sqrt(Pi)*n^(3/2)). - Ilya Gutkovskiy, Nov 14 2016
a(n) = 2*3^n*binomial(2n+1, n-1)*(n+1)/(2n^2+n). - Charles R Greathouse IV, Nov 14 2016

A371927 Expansion of 1/(1 - x/(1 - 8*x^2)^(1/4)).

Original entry on oeis.org

1, 1, 1, 3, 5, 17, 33, 113, 237, 803, 1769, 5915, 13493, 44547, 104337, 340527, 814397, 2630857, 6399865, 20486905, 50548997, 160507953, 400834465, 1263577141, 3188428301, 9985916077, 25426685961, 79168607025, 203193847381, 629311885861, 1626634117809
Offset: 0

Views

Author

Seiichi Manyama, Jun 07 2024

Keywords

Crossrefs

Programs

  • Maple
    A371927 := proc(n)
        add(8^k*binomial((n+2*k)/4-1,k),k=0..floor(n/2)) ;
    end proc:
    seq(A371927(n),n=0..70) ; # R. J. Mathar, Jun 07 2024
  • Mathematica
    CoefficientList[Series[1/(1-x/(1-8x^2)^(1/4)),{x,0,30}],x] (* Harvey P. Dale, Dec 20 2024 *)
  • PARI
    a(n) = sum(k=0, n\2, 8^k*binomial((n+2*k)/4-1, k));

Formula

a(n) = Sum_{k=0..floor(n/2)} 8^k * binomial((n+2*k)/4-1,k).
Previous Showing 11-20 of 22 results. Next