A298799
Expansion of (1-27*x)^(-1/9).
Original entry on oeis.org
1, 3, 45, 855, 17955, 398601, 9167823, 216098685, 5186368440, 126201632040, 3104560148184, 77049538223112, 1926238455577800, 48452305767226200, 1225151160114148200, 31118839466899364280, 793530406405933789140, 20305042752151835192700
Offset: 0
-
List([0..20],n->(3^n/Factorial(n))*Product([0..n-1],k->9*k+1)); # Muniru A Asiru, Jun 23 2018
-
seq(coeff(series((1-27*x)^(-1/9), x, n+1), x, n), n=0..20); # Muniru A Asiru, Jun 23 2018
# Alternative:
A298799 := n -> (-27)^n*binomial(-1/9, n):
seq(A298799(n), n=0..17); # Peter Luschny, Dec 26 2019
-
N=20; x='x+O('x^N); Vec((1-27*x)^(-1/9))
A186284
Self-convolution square equals A127776.
Original entry on oeis.org
1, 2, 48, 1704, 71490, 3291780, 160844160, 8189867280, 429832053840, 23088359467040, 1263134996327680, 70138971602098560, 3942799810867610280, 223942062435751452240, 12831882367225056387840, 740872398293620831990080
Offset: 0
G.f.: A(x) = 1 + 2*x + 48*x^2 + 1704*x^3 + 71490*x^4 + 3291780*x^5 +...
Related expansions.
The g.f. of A127776 equals A(x)^2:
A(x)^2 = 1 + 4*x + 100*x^2 + 3600*x^3 + 152100*x^4 + 7033104*x^5 +...+ A004981(n)^2*x^n +...
The g.f. of A002897 equals A(x)^4:
A(x)^4 = 1 + 8*x + 216*x^2 + 8000*x^3 + 343000*x^4 + 16003008*x^5 +...+ A000984(n)^3*x^n +...
The g.f. of A004981 begins:
1/(1-8*x)^(1/4) = 1 + 2*x + 10*x^2 + 60*x^3 + 390*x^4 + 2652*x^5 +...
where A004981(n) = (2^n/n!)*Product_{k=0..n-1} (4k + 1).
The g.f. of A000984 begins:
1/(1-4*x)^(1/2) = 1 + 2*x + 6*x^2 + 20*x^3 + 70*x^4 + 252*x^5 +...
where A000984(n) = (2n)!/(n!)^2 forms the central binomial coefficients.
-
nmax = 20; CoefficientList[Series[Sqrt[Hypergeometric2F1[ 1/4, 1/4, 1, 64*x]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 10 2018 *)
-
{a(n)=local(A004981=1/(1-8*x+x*O(x^n))^(1/4),A=sum(m=0,n,polcoeff(A004981,m)^2*x^m+x*O(x^n))^(1/2));polcoeff(A,n)}
-
{a(n)=local(A000984=1/(1-4*x+x*O(x^n))^(1/2),A=sum(m=0,n,polcoeff(A000984,m)^3*x^m+x*O(x^n))^(1/4));polcoeff(A,n)}
A209200
G.f.: (1-4*x)^(-1/2) * (1-8*x)^(-1/4).
Original entry on oeis.org
1, 4, 20, 112, 680, 4384, 29536, 205440, 1462368, 10587520, 77633920, 574845440, 4289409280, 32206976000, 243074083840, 1842511532032, 14018197145088, 106996519311360, 818973463721984, 6284217844736000, 48327723087278080, 372397083591557120
Offset: 0
G.f.: A(x) = 1 + 4*x + 60*x^2 + 1200*x^3 + 27300*x^4 + 668304*x^5 +...
This sequence equals the convolution of the sequences:
A000984 = [1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, ...], and
A004981 = [1, 2, 10, 60, 390, 2652, 18564, 132600, 961350, ...].
Related sequences:
A^2: [1, 8, 56, 384, 2656, 18688, 133888, 974848, 7194112, ...],
A^4: [1, 16, 176, 1664, 14592, 122880, 1011712, 8224768, ...].
-
CoefficientList[Series[(1-4*x)^(-1/2)*(1-8*x)^(-1/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
-
{a(n)=polcoeff((1-4*x +x*O(x^n))^(-1/2)*(1-8*x +x*O(x^n))^(-1/4),n)}
-
{A000984(n)=polcoeff((1-4*x +x*O(x^n))^(-1/2),n)}
{A004981(n)=polcoeff((1-8*x +x*O(x^n))^(-1/4),n)}
{a(n)=sum(k=0,n,A000984(n-k)*A004981(k))}
for(n=0,20,print1(a(n),", "))
A349844
Expansion of -(1 - 16*x)^(1/2) / (1 - 8*x)^(1/4).
Original entry on oeis.org
-1, 6, 38, 340, 3482, 38740, 457500, 5654440, 72412410, 953696900, 12844323828, 176130113432, 2450987760676, 34524885571400, 491309242342264, 7052495781361488, 101992452504973882, 1484590294804096356, 21732695236734410500, 319745609409940857144
Offset: 0
Let C(n) denote the Catalan numbers, P = A004981.
a(0) = -P(0) = -1;
a(1) = 2^3 * C(0) * P(0) - P(1) = 6;
a(2) = 2^3 * C(0) * P(1) + 2^5 * C(1) * P(0) - P(2) = 38;
a(3) = 2^3 * C(0) * P(2) + 2^5 * C(1) * P(1) + 2^7 * C(2) * P(0) - P(3) = 340;
a(4) = 2^3 * C(0) * P(3) + 2^5 * C(1) * P(2) + 2^7 * C(2) * P(1) + 2^9 * C(3) * P(0) - P(4) = 3482.
-
C(n) = binomial(2*n,n)/(n+1)
a(n) = sum(k=0, n-1, 2^(2*k+3) * C(k) * A004981(n-1-k)) - A004981(n) \\ See A004981 for its program
A349845
Expansion of -(1 - 16*x)^(1/2) / (1 + 8*x)^(1/4).
Original entry on oeis.org
-1, 10, 6, 332, 1498, 29964, 269660, 4066456, 48190842, 679524828, 8993585460, 126419889960, 1757062172580, 25004701186680, 356647387079160, 5145713721249072, 74607994412294970, 1089344167433473788, 15981504546211353156, 235635552851036269704
Offset: 0
Let C(n) denote the Catalan numbers, P = A004981.
a(0) = -P(0) = -1;
a(1) = 2^3 * C(0) * P(0) + P(1) = 10;
a(2) = -2^3 * C(0) * P(1) + 2^5 * C(1) * P(0) - P(2) = 6;
a(3) = 2^3 * C(0) * P(2) - 2^5 * C(1) * P(1) + 2^7 * C(2) * P(0) + P(3) = 332;
a(4) = -2^3 * C(0) * P(3) + 2^5 * C(1) * P(2) - 2^7 * C(2) * P(1) + 2^9 * C(3) * P(0) - P(4) = 1498.
-
C(n) = binomial(2*n,n)/(n+1)
a(n) = sum(k=0, n-1, (-1)^(n-1-k) * 2^(2*k+3) * C(k) * A004981(n-1-k)) + (-1)^(n-1) * A004981(n) \\ See A004981 for its program
A383600
Expansion of 1/( (1-x)^3 * (1-9*x) )^(1/4).
Original entry on oeis.org
1, 3, 15, 97, 699, 5313, 41689, 334215, 2721411, 22423737, 186497325, 1562826195, 13178010405, 111700773135, 951026829255, 8128169277897, 69701329848051, 599462375836185, 5169038197383789, 44674793959777443, 386916485124220929, 3357265884164614707
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( 1/( (1-x)^3 * (1-9*x) )^(1/4))); // Vincenzo Librandi, May 05 2025
-
Table[Sum[(-8)^(k)* Binomial[-1/4,k]* Binomial[n,k],{k,0,n}],{n,0,22}] (* Vincenzo Librandi, May 05 2025 *)
-
a(n) = sum(k=0, n, (-8)^k*binomial(-1/4, k)*binomial(n, k));
A122882
Array of T(n,m)=1*5*...*(4n-3)*3*7*...*(4m-1)*2^(n+m)/(n+m)! by antidiagonals.
Original entry on oeis.org
1, 2, 6, 10, 6, 42, 60, 20, 28, 308, 390, 90, 70, 154, 2310, 2652, 468, 252, 308, 924, 17556, 18564, 2652, 1092, 924, 1540, 5852, 134596, 132600, 15912, 5304, 3432, 3960, 8360, 38456, 1038312, 961350, 99450, 27846, 14586, 12870, 18810, 48070
Offset: 0
1 6 42 308 2310 17556 ...
2 6 28 154 924 5852 ...
10 20 70 308 1540 8360 ...
60 90 252 924 3960 18810 ...
390 468 1092 3432 12870 54340 ...
2652 2652 5304 14586 48620 184756 ...
18564 15912 27846 68068 204204 705432 ...
132600 99450 154700 340340 928200 2939300 ...
961350 640900 897260 1794520 4486300 13113800 ...
7049900 4229940 5383560 9869860 22776600 61822200 ...
-
A122882 := proc(n,m)
mul(4*i-3,i=1..n)*mul(4*i-1,i=1..m) ;
%*2^(n+m)/(n+m)! ;
end proc: # R. J. Mathar, Sep 24 2021
-
{T(n,m)=if(n<0||m<0, 0, 2^(n+m)/(n+m)!*prod(k=1, m, 4*k-1)*prod(k=1, n, 4*k-3))}
A209358
G.f.: (1-4*x)^(-1/4) * (1-8*x)^(-1/8).
Original entry on oeis.org
1, 2, 8, 40, 228, 1416, 9312, 63648, 446760, 3195728, 23179840, 169929280, 1256234720, 9350462400, 69993150720, 526455847680, 3976132184160, 30138433333440, 229168000121600, 1747455531216640, 13358199405416320, 102345801274115840, 785740341422453760
Offset: 0
G.f.: A(x) = 1 + 2*x + 8*x^2 + 40*x^3 + 228*x^4 + 1416*x^5 + 9312*x^6 +...
such that the square of the g.f. A(x) equals the g.f. of A209200:
A(x)^2 = 1 + 4*x + 20*x^2 + 112*x^3 + 680*x^4 + 4384*x^5 + 29536*x^6 +...
Sequence A209200 equals the convolution of the sequences:
A000984 = [1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, ...],
A004981 = [1, 2, 10, 60, 390, 2652, 18564, 132600, 961350, ...].
-
I:=[2,8]; [1] cat [n le 2 select I[n] else (2*(6*n-5)*Self(n-1) - 4*(8*n-13)*Self(n-2))/n: n in [1..30]]; // G. C. Greubel, Jan 03 2018
-
CoefficientList[Series[(1-4*x)^(-1/4)*(1-8*x)^(-1/8), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
-
{a(n)=polcoeff((1-4*x +x*O(x^n))^(-1/4)*(1-8*x +x*O(x^n))^(-1/8), n)}
for(n=0,30,print1(a(n),", "))
A275607
a(n) = 2*12^n*Gamma(n+1/2)*(n+1)/(sqrt(Pi)*Gamma(n+3)).
Original entry on oeis.org
1, 4, 27, 216, 1890, 17496, 168399, 1667952, 16888014, 173997720, 1818276174, 19225409616, 205299909828, 2210922105840, 23984556773175, 261854925711840, 2874948871877910, 31722346066169880, 351589335566716170, 3912422681494285200, 43694647856506630620, 489597172255515289680
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..925
- Simeon T. Stefanov, Counting fixed points free vector fields on B^2, arXiv:1807.03714 [math.GT], 2018.
- K. Szymanski, B. Collins, T. Szarek and K. Zyczkowski, Convex set of quantum states with positive partial transpose analysed by hit and run algorithm, arXiv:1611.01194 [quant-ph], 2016.
-
a := n -> (2^(2*n+1)*3^n*(n+1)*GAMMA(n+1/2))/(sqrt(Pi)*GAMMA(n+3)):
seq(a(n), n=0..21); # Peter Luschny, Nov 14 2016
-
g[z_] := E^z (BesselI[0,z] - (1-1/z) BesselI[1,z])
Table[CoefficientList[2/3 Series[g[6z], {z,0,21}],z]] Range[0, 21]! //Flatten (* Peter Luschny, Nov 14 2016 *)
Table[ 2*12^n*(n + 1)*Gamma[n + 1/2]/(Sqrt[Pi]*Gamma[n + 3]), {n,0,100}] (* G. C. Greubel, Jan 13 2017 *)
-
a(n)=2*12^n*gamma(n+1/2)*(n+1)\/(sqrt(Pi)*(n+2)!) \\ Charles R Greathouse IV, Nov 14 2016
-
a(n)=2*3^n*binomial(2*n+1,n-1)*(n+1)/(2*n+1)/n \\ Charles R Greathouse IV, Nov 14 2016
A371927
Expansion of 1/(1 - x/(1 - 8*x^2)^(1/4)).
Original entry on oeis.org
1, 1, 1, 3, 5, 17, 33, 113, 237, 803, 1769, 5915, 13493, 44547, 104337, 340527, 814397, 2630857, 6399865, 20486905, 50548997, 160507953, 400834465, 1263577141, 3188428301, 9985916077, 25426685961, 79168607025, 203193847381, 629311885861, 1626634117809
Offset: 0
-
A371927 := proc(n)
add(8^k*binomial((n+2*k)/4-1,k),k=0..floor(n/2)) ;
end proc:
seq(A371927(n),n=0..70) ; # R. J. Mathar, Jun 07 2024
-
CoefficientList[Series[1/(1-x/(1-8x^2)^(1/4)),{x,0,30}],x] (* Harvey P. Dale, Dec 20 2024 *)
-
a(n) = sum(k=0, n\2, 8^k*binomial((n+2*k)/4-1, k));
Comments