cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 45 results. Next

A376282 G.f. A(x) satisfies A(x) = (1 + 9*x*A(x)^7)^(1/3).

Original entry on oeis.org

1, 3, 54, 1368, 40365, 1299078, 44223732, 1565864784, 57079952046, 2127818007315, 80742077597610, 3108398557803480, 121107814518484872, 4766365291226837508, 189209375036491438800, 7567095678024459993120, 304603864960375133224533, 12331716699093681951702810
Offset: 0

Views

Author

Seiichi Manyama, Oct 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    A376282[n_] := 9^n*Binomial[(7*n + 1)/3, n]/(7*n + 1);
    Array[A376282, 20, 0] (* Paolo Xausa, Aug 04 2025 *)
  • PARI
    a(n) = 9^n*binomial(7*n/3+1/3, n)/(7*n+1);

Formula

a(n) = 9^n * binomial(7*n/3 + 1/3,n)/(7*n+1).
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^11). - Seiichi Manyama, Jun 20 2025
D-finite with recurrence 8*n*(n-1)*(n-2)*(4*n-5)*(2*n-1)*(4*n+1)*a(n) -189*(7*n-11)*(7*n-17)*(7*n-2)*(7*n-20)*(7*n-5)*(7*n-8)*a(n-3)=0. - R. J. Mathar, Jul 30 2025

A034385 Expansion of (1-16*x)^(-1/4), related to quartic factorial numbers.

Original entry on oeis.org

1, 4, 40, 480, 6240, 84864, 1188096, 16972800, 246105600, 3609548800, 53421322240, 796463349760, 11946950246400, 180123249868800, 2727580640870400, 41459225741230080, 632253192553758720
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A007696.
Expansion of (1-b^2*x)^(-1/b): A000984 (b=2), A004987 (b=3), this sequence (b=4), A034688 (b=5), A004993 (b=6), A034835 (b=7), A034977 (b=8), A035024 (b=9), A035308 (b=10).

Programs

  • Mathematica
    CoefficientList[Series[1/Surd[1-16x,4],{x,0,20}],x] (* Harvey P. Dale, Aug 06 2018 *)

Formula

a(n) = (4^n/n!)*A007696(n), n >= 1, a(0) := 1, A007696(n) = (4*n-3)!^4 := Product_{j = 1..n} 4*j - 3.
G.f.: (1 - 16*x)^(-1/4).
D-finite with recurrence: n*a(n) + 4*(-4*n + 3)*a(n-1) = 0. - R. J. Mathar, Jan 28 2020
From Peter Bala, Mar 31 2024: (Start)
a(n) = (-16)^n*binomial(-1/4, n).
a(n) ~ Gamma(3/4)/(sqrt(2)*Pi) * 16^n/n^(3/4).
E.g.f.: hypergeom([1/4], [1], 16*x).
a(n) = (16^n)*Sum_{k = 0..2*n} (-1)^k*binomial(-1/4, k)* binomial(-1/4, 2*n - k).
(16^n)*a(n) = Sum_{k = 0..2*n} (-1)^k*a(k)*a(2*n-k).
Sum_{k = 0..n} a(k)*a(n-k) = (4^n)*binomial(2*n, n) = A098430.
Sum_{k = 0..2*n} a(k)*a(2*n-k) = (16^n)*binomial(4*n, 2*n). (End)

A248324 Square array read by antidiagonals downwards: super Patalan numbers of order 3.

Original entry on oeis.org

1, 3, 6, 18, 9, 45, 126, 36, 45, 360, 945, 189, 135, 270, 2970, 7371, 1134, 567, 648, 1782, 24948, 58968, 7371, 2835, 2268, 3564, 12474, 212058, 480168, 50544, 15795, 9720, 10692, 21384, 90882, 1817640, 3961386, 360126, 94770, 47385, 40095, 56133, 136323, 681615, 15677145, 33011550, 2640924, 600210, 252720, 173745, 187110, 318087, 908820, 5225715, 135868590
Offset: 0

Views

Author

Tom Richardson, Oct 04 2014

Keywords

Comments

Generalization of super Catalan numbers of Gessel, A068555, based on Patalan numbers of order 3, A097188.

Examples

			T(0..4,0..4) is:
  1    3    18   126   945
  6    9    36   189   1134
  45   45   135  567   2835
  360  270  648  2268  9720
  2970 1782 3564 10692 40095
		

Crossrefs

Cf. A068555, A248325. First column is A004988, first row is A004987. a(n,1) = -A004990(n+1) = 3*A097188(n). a(1,k) = -A004989(k+1).

Formula

T(0,0)=1, T(n,k) = T(n-1,k)*(9*n-3)/(n+k), T(n,k) = T(n,k-1)*(9*k-6)/(n+k).
G.f.: (x/(1-9*x)^(2/3)+y/(1-9*y)^(1/3))/(x+y-9*x*y).

A361843 Expansion of 1/(1 - 9*x*(1-x))^(1/3).

Original entry on oeis.org

1, 3, 15, 90, 585, 3969, 27657, 196290, 1411965, 10261485, 75183147, 554480316, 4111617510, 30628393110, 229048769790, 1718666596692, 12933847045701, 97584913269675, 737953856289675, 5591915004100950, 42450848142844995, 322796964495941235
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2023

Keywords

Crossrefs

Column k=1 of A361840.
Cf. A004987.

Programs

  • Maple
    A361843 := n -> (-9)^n*binomial(-1/3, n)*hypergeom([1/2 - n/2, -n/2], [2/3 - n], 4/9): seq(simplify(A361843(n)), n = 0..21); # Peter Luschny, Mar 27 2023
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(1-9*x*(1-x))^(1/3))

Formula

n*a(n) = 3 * ( (3*n-2)*a(n-1) - (3*n-4)*a(n-2) ) for n > 1.
a(n) = (-1)^n * Sum_{k=0..n} 9^k * binomial(-1/3,k) * binomial(k,n-k).
a(n) = A004987(n)*hypergeom([1/2 - n/2, -n/2], [2/3 - n], 4/9). - Peter Luschny, Mar 27 2023
a(n) ~ 3^n * phi^(2*n + 2/3) / (Gamma(1/3) * 5^(1/6) * n^(2/3)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Mar 29 2023

A361844 Expansion of 1/(1 - 9*x*(1-x)^2)^(1/3).

Original entry on oeis.org

1, 3, 12, 57, 297, 1629, 9216, 53217, 311796, 1846818, 11032416, 66356712, 401364531, 2439135585, 14882263002, 91116281565, 559528781697, 3445002647847, 21260140172244, 131474746842345, 814564464082263, 5055177167348463, 31420067723814780
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2023

Keywords

Crossrefs

Column k=2 of A361840.

Programs

  • Maple
    A361844 := n -> (-9)^n*binomial(-1/3, n)*hypergeom([1/3 - n*2/3, 2/3 - n*2/3,
    -n*2/3], [1/2 - n, 2/3 - n], 3/4):
    seq(simplify(A361844(n)), n = 0..22); # Peter Luschny, Mar 27 2023
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(1-9*x*(1-x)^2)^(1/3))

Formula

n*a(n) = 3 * ( (3*n-2)*a(n-1) - 2*(3*n-4)*a(n-2) + (3*n-6)*a(n-3) ) for n > 2.
a(n) = (-1)^n * Sum_{k=0..n} 9^k * binomial(-1/3,k) * binomial(2*k,n-k).
a(n) = (-9)^n*binomial(-1/3, n)*hypergeom([1/3 - n*2/3, 2/3 - n*2/3, -n*2/3], [1/2 - n, 2/3 - n], 3/4). - Peter Luschny, Mar 27 2023

A124214 E.g.f.: exp(x) / (2 - exp(3*x))^(1/3).

Original entry on oeis.org

1, 2, 10, 98, 1402, 26162, 601930, 16462658, 521659162, 18791451602, 758345497450, 33889063202018, 1661229537252922, 88627461127536242, 5112116659677605770, 317007674364657538178, 21030558126242472270682
Offset: 0

Views

Author

Karol A. Penson, Oct 19 2006

Keywords

Crossrefs

Programs

  • Maple
    A124214 := proc(n)
        exp(x)/root[3](2-exp(3*x)) ;
        coeftayl(%,x=0,n)*n! ;
    end proc: # R. J. Mathar, Dec 19 2013
  • Mathematica
    CoefficientList[Series[Exp[x]/(2-Exp[3*x])^(1/3), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 26 2013 *)
  • PARI
    a(n)=local(A=1+x); for(i=1, n, A=1+intformal(A+A^4+x*O(x^n))); n!*polcoeff(A, n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Dec 18 2013

Formula

a(n) ~ Gamma(2/3)*3^(n+1/2)*n^(n-1/6)/(sqrt(2*Pi)*exp(n)*(log(2))^(n+1/3)). - Vaclav Kotesovec, Jun 26 2013
E.g.f. A(x) satisfies: A'(x) = A(x) + A(x)^4. - Paul D. Hanna, Dec 18 2013
E.g.f. A(x) satisfies: A(x) = exp(x + Integral A(x)^3 dx) with A(0)=1. - Paul D. Hanna, Dec 18 2013
a(n) = 2^(-1/3) * Sum_{k >= 0} (1/18)^k*A004987(k)*(3*k + 1)^n = 2^(-1/3) * Sum_{k >= 0} (-1/2)^k*binomial(-1/3, k)*(3*k + 1)^n. Cf. A124212 and A229558. - Peter Bala, Aug 30 2016

A247029 G.f. A(x) satisfies A(x) = A(x)^4 - 9*x.

Original entry on oeis.org

1, 3, -18, 180, -2187, 29484, -424116, 6377292, -99034650, 1576075644, -25569752274, 421325812440, -7031733125508, 118620405322020, -2019349799669160, 34647126360607440, -598525520999144643, 10401492640172342940, -181721630178565389900, 3189811189331825319492
Offset: 0

Views

Author

Paul D. Hanna, Sep 09 2014

Keywords

Examples

			G.f.: A(x) = 1 + 3*x - 18*x^2 + 180*x^3 - 2187*x^4 + 29484*x^5 - 424116*x^6 +...
where
A(x)^4 = 1 + 12*x - 18*x^2 + 180*x^3 - 2187*x^4 + 29484*x^5 - 424116*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    FullSimplify[Table[-(-1)^n * 3^(2*n-1) * 4^(n-1) * Gamma[n/3 + 1/6] * Gamma[2*n/3 - 1/6] / (Pi * Gamma[n + 1]), {n, 0, 20}]] (* Vaclav Kotesovec, Nov 18 2017 *)
  • PARI
    {a(n)=polcoeff(x/serreverse(x*(1+9*x +x^2*O(x^n))^(1/3)), n)}
    for(n=0, 25, print1(a(n), ", "))

Formula

G.f.: x / Series_Reversion( x*(1 + 9*x)^(1/3) ).
Recurrence: (n-2)*(n-1)*n*a(n) = -216*(2*n - 5)*(4*n - 13)*(4*n - 7)*a(n-3). - Vaclav Kotesovec, Nov 18 2017
a(n) ~ -(-1)^n * 2^(8*n/3 - 13/6) * 3^n / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Nov 18 2017
G.f. A(x) satisfies A(x) = 1/A(-x/A(x)^5). - Seiichi Manyama, Jun 20 2025

A268549 Diagonal of (1 - 9 x y)/((1 - 3 y - 2 x + 3 y^2 + 9 x^2 y) * (1 - u - z) * (1 - v - w)).

Original entry on oeis.org

1, 12, 648, 50400, 4630500, 468087984, 50345463168, 5655718328832, 656151696743400, 78036148295820000, 9465472643689782720, 1166663950520357802240, 145719568153188579382560, 18405635030728188793200000
Offset: 0

Views

Author

N. J. A. Sloane, Feb 29 2016

Keywords

Comments

"The corresponding (order-three) linear differential operator is not homomorphic to its adjoint, even with an algebraic extension." (see A. Bostan link) - Gheorghe Coserea, Aug 15 2016

Examples

			1 + 12*x + 648*x^2 + 50400*x^3 + ...
		

Crossrefs

Programs

  • Maple
    A268549 := proc(n)
        (1-9*x*y)/(1-3*y-2*x+3*y^2+9*x^2*y)/(1-u-z)/(1-v-w) ;
        coeftayl(%,x=0,n) ;
        coeftayl(%,y=0,n) ;
        coeftayl(%,z=0,n) ;
        coeftayl(%,u=0,n) ;
        coeftayl(%,v=0,n) ;
        coeftayl(%,w=0,n) ;
    end proc:
    seq(A268549(n),n=0..40) ; # R. J. Mathar, Mar 11 2016
    series(hypergeom([1/3, 1/2, 1/2], [1, 1], 144*x), x=0, 14); # Gheorghe Coserea, Aug 15 2016
  • Mathematica
    FullSimplify[Table[3^(2*n)*(2*n)!^2*Gamma[n + 1/3]/(Gamma[1/3]*(n!)^5), {n, 0, 15}]] (* Vaclav Kotesovec, Jul 01 2016 *)

Formula

a(n) = [(xyzuvw)^n] (1 - 9*x*y)/((1 - 3*y - 2*x + 3*y^2 + 9*x^2*y) * (1 - u - z) * (1 - v - w)).
D-finite with recurrence: n^3*a(n) -12*(3*n-2)*(-1+2*n)^2*a(n-1)=0. - R. J. Mathar, Mar 11 2016 [follows from the hypergeometric g.f. below - Georg Fischer, Jul 30 2022]
From Vaclav Kotesovec, Jul 01 2016: (Start)
a(n) = 3^(2*n) * (2*n)!^2 * Gamma(n + 1/3) / (Gamma(1/3) * (n!)^5).
a(n) ~ 12^(2*n)/(Gamma(1/3)*Pi*n^(5/3)).
(End)
From Gheorghe Coserea, Aug 16 2016: (Start)
a(n) = [(xyzuv)^n] 1/((1 - x + 3*y - 27*x*y^3 - 27*x*y^2 - 9*x*y + 3*y^2) * (1 - u - v - u*z - v*z)).
G.f.: hypergeom([1/3, 1/2, 1/2], [1, 1], 144*x).
(End)

A376802 Expansion of 1/((1 - x)^3 - 9*x)^(1/3).

Original entry on oeis.org

1, 4, 31, 283, 2770, 28204, 294568, 3131650, 33732883, 367035814, 4025600941, 44439461275, 493218155119, 5498860571026, 61543476786067, 691095770653867, 7783168304357434, 87878978740300960, 994484816394177214, 11276915136560900662, 128106749179069022344
Offset: 0

Views

Author

Seiichi Manyama, Oct 04 2024

Keywords

Crossrefs

Partial sums of A361895.
Cf. A004987.

Programs

  • Mathematica
    CoefficientList[Series[1/Surd[((1-x)^3-9x),3],{x,0,30}],x] (* Harvey P. Dale, Dec 11 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/((1-x)^3-9*x)^(1/3))

Formula

a(n) = Sum_{k=0..n} (-9)^k * binomial(-1/3,k) * binomial(n+2*k,n-k).
a(n) = hypergeom([(1+n)/2, 1+n/2, -n], [2/3, 1], -4/3). - Stefano Spezia, May 04 2025

A383597 Expansion of 1/( (1-x)^2 * (1-10*x) )^(1/3).

Original entry on oeis.org

1, 4, 25, 190, 1570, 13552, 120178, 1085620, 9940345, 91962460, 857750233, 8053389142, 76026759760, 721017894640, 6864725124520, 65578937628304, 628320730656586, 6035594205744520, 58110220504754650, 560624083417180300, 5418599393597801020, 52459116546784350880
Offset: 0

Views

Author

Seiichi Manyama, May 01 2025

Keywords

Crossrefs

Programs

  • Magma
    I:=[4,25]; [1] cat [n le 2 select I[n] else ((11*n-7)*Self(n-1) - 10*(n-1) *Self(n-2))/n : n in [1..30]]; // Vincenzo Librandi, May 04 2025
  • Mathematica
    Table[Sum[(-9)^k *Binomial[-1/3,k]* Binomial[n, k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, May 04 2025 *)
  • PARI
    a(n) = sum(k=0, n, (-9)^k*binomial(-1/3, k)*binomial(n, k));
    

Formula

a(n) = Sum_{k=0..n} (-9)^k * binomial(-1/3,k) * binomial(n,k).
n*a(n) = (11*n-7)*a(n-1) - 10*(n-1)*a(n-2) for n > 1.
a(n) ~ 10^(n + 2/3) / (Gamma(1/3) * 3^(4/3) * n^(2/3)). - Vaclav Kotesovec, May 02 2025
a(n) = hypergeom([1/3, -n], [1], -9). - Stefano Spezia, May 04 2025
Previous Showing 11-20 of 45 results. Next