cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A005067 Sum of cubes of odd primes dividing n.

Original entry on oeis.org

0, 0, 27, 0, 125, 27, 343, 0, 27, 125, 1331, 27, 2197, 343, 152, 0, 4913, 27, 6859, 125, 370, 1331, 12167, 27, 125, 2197, 27, 343, 24389, 152, 29791, 0, 1358, 4913, 468, 27, 50653, 6859, 2224, 125, 68921, 370, 79507, 1331, 152, 12167, 103823, 27, 343, 125, 4940, 2197, 148877, 27, 1456, 343, 6886, 24389, 205379, 152
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

Additive with a(p^e) = 0 if p = 2, p^3 otherwise.
G.f.: Sum_{k>=2} prime(k)^3*x^prime(k)/(1 - x^prime(k)). - Ilya Gutkovskiy, Jan 06 2017
From Antti Karttunen, Jul 10 2017: (Start)
a(1) = 0; after which, for even n: a(n) = a(n/2), for odd n: a(n) = A020639(n)^3 + a(A028234(n)).
a(n) = A005064(A000265(n)).
(End)

Extensions

More terms from Antti Karttunen, Jul 10 2017

A351196 Sum of the 8th powers of the primes dividing n.

Original entry on oeis.org

0, 256, 6561, 256, 390625, 6817, 5764801, 256, 6561, 390881, 214358881, 6817, 815730721, 5765057, 397186, 256, 6975757441, 6817, 16983563041, 390881, 5771362, 214359137, 78310985281, 6817, 390625, 815730977, 6561, 5765057, 500246412961, 397442, 852891037441, 256
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 04 2022

Keywords

Comments

Inverse Möbius transform of n^8 * c(n), where c(n) is the prime characteristic (A010051). - Wesley Ivan Hurt, Jun 22 2024

Crossrefs

Sum of the k-th powers of the primes dividing n for k=0..10 : A001221 (k=0), A008472 (k=1), A005063 (k=2), A005064 (k=3), A005065 (k=4), A351193 (k=5), A351194 (k=6), A351195 (k=7), this sequence (k=8), A351197 (k=9), A351198 (k=10).
Cf. A010051.

Programs

  • Mathematica
    Array[DivisorSum[#, #^8 &, PrimeQ] &, 50]
    f[p_, e_] := p^8; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 20 2022 *)
  • Python
    from sympy import primefactors
    def A351196(n): return sum(p**8 for p in primefactors(n)) # Chai Wah Wu, Feb 05 2022

Formula

a(n) = Sum_{p|n, p prime} p^8.
G.f.: Sum_{k>=1} prime(k)^8 * x^prime(k) / (1 - x^prime(k)). - Ilya Gutkovskiy, Feb 16 2022
Additive with a(p^e) = p^8. - Amiram Eldar, Jun 20 2022
a(n) = Sum_{d|n} d^8 * c(d), where c = A010051. - Wesley Ivan Hurt, Jun 22 2024

A005080 Sum of cubes of primes = 1 mod 4 dividing n.

Original entry on oeis.org

0, 0, 0, 0, 125, 0, 0, 0, 0, 125, 0, 0, 2197, 0, 125, 0, 4913, 0, 0, 125, 0, 0, 0, 0, 125, 2197, 0, 0, 24389, 125, 0, 0, 0, 4913, 125, 0, 50653, 0, 2197, 125, 68921, 0, 0, 0, 125, 0, 0, 0, 0, 125, 4913, 2197, 148877, 0, 125, 0, 0, 24389, 0, 125, 226981, 0, 0, 0, 2322, 0, 0, 4913, 0, 125, 0, 0, 389017, 50653, 125
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Array[DivisorSum[#, #^3 &, And[PrimeQ@ #, Mod[#, 4] == 1] &] &, 75] (* Michael De Vlieger, Jul 11 2017 *)
    f[p_, e_] := If[Mod[p, 4] == 1, p^3, 0]; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 21 2022 *)
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, if (((p=f[k,1])%4) == 1, p^3)); \\ Michel Marcus, Jul 11 2017
  • Scheme
    (define (A005080 n) (if (= 1 n) 0 (+ (if (= 1 (modulo (A020639 n) 4)) (A000578 (A020639 n)) 0) (A005080 (A028234 n))))) ;; Antti Karttunen, Jul 11 2017
    

Formula

Additive with a(p^e) = p^3 if p = 1 (mod 4), 0 otherwise.
a(n) = A005064(n) - A005084(n) - 8*A059841(n). - Antti Karttunen, Jul 11 2017

Extensions

More terms from Antti Karttunen, Jul 11 2017

A005084 Sum of cubes of primes = 3 mod 4 dividing n.

Original entry on oeis.org

0, 0, 27, 0, 0, 27, 343, 0, 27, 0, 1331, 27, 0, 343, 27, 0, 0, 27, 6859, 0, 370, 1331, 12167, 27, 0, 0, 27, 343, 0, 27, 29791, 0, 1358, 0, 343, 27, 0, 6859, 27, 0, 0, 370, 79507, 1331, 27, 12167, 103823, 27, 343, 0, 27, 0, 0, 27, 1331, 343, 6886, 0, 205379, 27, 0, 29791, 370, 0, 0, 1358, 300763, 0, 12194, 343, 357911
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Array[DivisorSum[#, #^3 &, And[PrimeQ@ #, Mod[#, 4] == 3] &] &, 71] (* Michael De Vlieger, Jul 11 2017 *)
    f[p_, e_] := If[Mod[p, 4] == 3, p^3, 0]; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 21 2022 *)
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, if (((p=f[k,1])%4) == 3, p^3)); \\ Michel Marcus, Jul 11 2017
  • Scheme
    (define (A005084 n) (if (= 1 n) 0 (+ (if (= 3 (modulo (A020639 n) 4)) (A000578 (A020639 n)) 0) (A005084 (A028234 n))))) ;;  Antti Karttunen, Jul 11 2017
    

Formula

Additive with a(p^e) = p^3 if p = 3 (mod 4), 0 otherwise.
a(n) = A005064(n) - A005080(n) - 8*A059841(n). - Antti Karttunen, Jul 11 2017

Extensions

More terms from Antti Karttunen, Jul 11 2017

A005076 Sum of cubes of primes = 2 mod 3 dividing n.

Original entry on oeis.org

0, 8, 0, 8, 125, 8, 0, 8, 0, 133, 1331, 8, 0, 8, 125, 8, 4913, 8, 0, 133, 0, 1339, 12167, 8, 125, 8, 0, 8, 24389, 133, 0, 8, 1331, 4921, 125, 8, 0, 8, 0, 133, 68921, 8, 0, 1339, 125, 12175, 103823, 8, 0, 133, 4913, 8, 148877, 8, 1456, 8, 0, 24397, 205379, 133, 0, 8, 0, 8, 125, 1339, 0, 4921, 12167, 133, 357911
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Array[DivisorSum[#, #^3 &, And[PrimeQ@ #, Mod[#, 3] == 2] &] &, 71] (* Michael De Vlieger, Jul 11 2017 *)
    f[p_, e_] := If[Mod[p, 3] == 2, p^3, 0]; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 21 2022 *)
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, if (((p=f[k,1])%3) == 2, p^3)); \\ Michel Marcus, Jul 11 2017
  • Scheme
    (define (A005076 n) (if (= 1 n) 0 (+ (A000578 (if (= 2 (modulo (A020639 n) 3)) (A020639 n) 0)) (A005076 (A028234 n))))) ;; Antti Karttunen, Jul 10 2017
    

Formula

Additive with a(p^e) = p^3 if p = 2 (mod 3), 0 otherwise.
a(n) = A005064(n) - A005072(n) - 27*A079978(n). - Antti Karttunen, Jul 10 2017

Extensions

More terms from Antti Karttunen, Jul 10 2017

A347157 Sum of cubes of distinct prime divisors of n that are < sqrt(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 8, 0, 8, 0, 8, 0, 35, 0, 8, 27, 8, 0, 35, 0, 8, 27, 8, 0, 35, 0, 8, 27, 8, 0, 160, 0, 8, 27, 8, 125, 35, 0, 8, 27, 133, 0, 35, 0, 8, 152, 8, 0, 35, 0, 133, 27, 8, 0, 35, 125, 351, 27, 8, 0, 160, 0, 8, 370, 8, 125, 35, 0, 8, 27, 476, 0, 35, 0, 8, 152
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, #^3 &, # < Sqrt[n] && PrimeQ[#] &], {n, 1, 75}]
    nmax = 75; CoefficientList[Series[Sum[Prime[k]^3 x^(Prime[k] (Prime[k] + 1))/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

G.f.: Sum_{k>=1} prime(k)^3 * x^(prime(k)*(prime(k) + 1)) / (1 - x^prime(k)).

A067170 Numbers n such that sum of the cubes of the distinct prime factors of n equals the sum of the cubes of the digits of n.

Original entry on oeis.org

2, 3, 5, 7, 250, 735, 2500, 25000, 250000, 1858560, 2500000, 18585600, 25000000, 91990080, 185856000, 242121642, 250000000, 919900800, 1081088775, 1390120992, 1768635648, 1858560000, 2500000000, 5435938431, 7245987840, 9199008000, 9475854336, 17996666688, 18585600000, 24214634829, 25000000000
Offset: 1

Views

Author

Joseph L. Pe, Feb 18 2002

Keywords

Comments

If 10*m is a term (e.g. m = 25, 185856, 9199008), then 10^k * m is a term for all k >= 1. Therefore this sequence is infinite. - Amiram Eldar, Sep 28 2019
The sum of cubes of digits of a k-digit number is at most 729*k. Therefore any term with at most k digits is p-smooth where p is the largest prime < (729*k)^(1/3). - David A. Corneth, Sep 28 2019

Examples

			The prime factors of 735 are 3,5,7, the sum of whose cubes = 495 = sum of the cubes of the digits of 735; so 735 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{a, l, t, r}, a = FactorInteger[n]; l = Length[a]; t = Table[a[[i]][[1]], {i, 1, l}]; r = Sum[(t[[i]])^3, {i, 1, l}]]; g[n_] := Module[{b, m, s}, b = IntegerDigits[n]; m = Length[b]; s = Sum[(b[[i]])^3, {i, 1, m}]]; Select[Range[2, 10^6], f[ # ] == g[ # ] &]
  • PARI
    sd(n) = my(d=digits(n)); sum(k=1, #d, d[k]^3); \\ A055012
    sp(n) = my(f=factor(n)); sum(k=1, #f~, f[k,1]^3); \\ A005064
    isok(n) = sp(n) == sd(n); \\ Michel Marcus, Sep 28 2019

Extensions

a(10)-a(14) from Amiram Eldar, Sep 28 2019
a(15)-a(18) from Michel Marcus, Sep 28 2019
a(20)-a(29) from David A. Corneth, Sep 28 2019
Missing a(19) from Giovanni Resta, Sep 28 2019

A322080 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{p|n, p prime} p^k.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 0, 4, 3, 1, 0, 8, 9, 2, 1, 0, 16, 27, 4, 5, 2, 0, 32, 81, 8, 25, 5, 1, 0, 64, 243, 16, 125, 13, 7, 1, 0, 128, 729, 32, 625, 35, 49, 2, 1, 0, 256, 2187, 64, 3125, 97, 343, 4, 3, 2, 0, 512, 6561, 128, 15625, 275, 2401, 8, 9, 7, 1, 0, 1024, 19683, 256, 78125, 793, 16807, 16, 27, 29, 11, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2018

Keywords

Examples

			Square array begins:
  0,  0,   0,    0,    0,     0,  ...
  1,  2,   4,    8,   16,    32,  ...
  1,  3,   9,   27,   81,   243,  ...
  1,  2,   4,    8,   16,    32,  ...
  1,  5,  25,  125,  625,  3125,  ...
  2,  5,  13,   35,   97,   275,  ...
		

Crossrefs

Columns k=0..4 give A001221, A008472, A005063, A005064, A005065.
Cf. A109974, A200768 (diagonal), A285425, A286880, A321258.

Programs

  • Mathematica
    Table[Function[k, Sum[Boole[PrimeQ[d]] d^k, {d, Divisors[n]}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[Prime[j]^k x^Prime[j]/(1 - x^Prime[j]), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
  • PARI
    T(n,k)={vecsum([p^k | p<-factor(n)[,1]])}
    for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018

Formula

G.f. of column k: Sum_{j>=1} prime(j)^k*x^prime(j)/(1 - x^prime(j)).

A199583 a(n) is the smallest number such that the sum of the n-th powers of its distinct prime divisors is divisible by n.

Original entry on oeis.org

2, 2, 3, 2, 5, 70, 7, 2, 3, 33, 11, 1155, 13, 78, 26, 2, 17, 2156564410, 19, 6006, 26, 114, 23, 2156564410, 5, 33, 3, 1365, 29, 110, 31, 2, 62, 15, 201, 2156564410, 37, 30, 14, 961380175077106319535, 41, 1385670, 43, 2805, 26, 266, 47, 961380175077106319535
Offset: 1

Views

Author

Michel Lagneau, Nov 08 2011

Keywords

Comments

a(n) > 1 and a(n) = n if n prime. All terms are squarefree.

Examples

			a(6) = 70 = 2*5*7; 2^6 + 5^6 + 7^6 = 133338 = 22223*6.
a(18)= 2*5*7*11*13*17*19*23*29 = 2156564410 because:
p^18 == 10, 9 (mod 18) for p = 2,3 respectively, and p^18 == 1 (mod 18) for p prime > 3. The minimum sum divisible by 18 is s = 2^18 + Sum_{k=3..10} prime(k)^18 whose residues sum to 10 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 18. Hence a(18) = 2156564410.
		

Crossrefs

Programs

  • Maple
    with(numtheory): T:=array(1..50):for n from 1 to 50 do:q:=0:for k from 2 to 7000 while(q=0)do:x:=factorset(k):s:=sum(x[j]^n ,j=1..nops(x)) :if irem(s,n)=0 then printf ( "%d %d \n",n,k):q:=1:else fi:od:if q=0 then for i from 1 to n do: T[i]:=irem(ithprime(i)^n,n):od:W:=convert(T,set):n1:=nops(W):n2:=W[n1]:n3:=W[n1-1]:
    s:=0:p:=1:for a from 1 to n  while(s<>n) do: if T[a]= 1 or T[a]=n2 or (T[a] = n3 and n2+n3
    				

A279290 Sum of cubes of nonprime divisors of n.

Original entry on oeis.org

1, 1, 1, 65, 1, 217, 1, 577, 730, 1001, 1, 2009, 1, 2745, 3376, 4673, 1, 6778, 1, 9065, 9262, 10649, 1, 16345, 15626, 17577, 20413, 24761, 1, 31592, 1, 37441, 35938, 39305, 42876, 55226, 1, 54873, 59320, 73577, 1, 86310, 1, 95897, 95230, 97337, 1, 131033, 117650, 141626, 132652, 158249, 1, 183925, 166376
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 12 2016

Keywords

Examples

			a(4) = 65 because 4 has 2 nonprime divisors {1,4} and 1^3 + 4^3 = 65.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, #1^3 & ,  !PrimeQ[#1] & ], {n, 55}]
    Table[DivisorSigma[3, n] - DivisorSum[n, #1^3 & , PrimeQ[#1] & ], {n, 55}]
    Table[Total[Select[Divisors[n],!PrimeQ[#]&]^3],{n,60}] (* Harvey P. Dale, Aug 02 2024 *)
  • PARI
    a(n) = {my(f = factor(n)); sigma(f, 3) - sum(i=1, #f~, f[i, 1]^3);} \\ Amiram Eldar, Jan 11 2025

Formula

a(n) = A001158(n) - A005064(n).
a(n) = 1 when n = 1 or n is prime.
a(p^k) = (p^(3*k+3) - 1)/(p^3 - 1) - p^3 when p is prime.
Previous Showing 11-20 of 24 results. Next