cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 144 results. Next

A104635 Odd n such that 2*n+1 is prime.

Original entry on oeis.org

1, 3, 5, 9, 11, 15, 21, 23, 29, 33, 35, 39, 41, 51, 53, 63, 65, 69, 75, 81, 83, 89, 95, 99, 105, 111, 113, 119, 125, 131, 135, 141, 153, 155, 165, 173, 179, 183, 189, 191, 209, 215, 219, 221, 231, 233, 239, 243, 245, 249, 251, 261, 273, 281, 285, 293, 299
Offset: 1

Views

Author

Zak Seidov, Mar 18 2005

Keywords

Comments

Also: Numbers k such that 2k+1 is in A002145, i.e., a Gaussian prime. - M. F. Hasler, Feb 25 2011
Also: Number of quadratic residues modulo A002145(n). - M. F. Hasler, Feb 25 2011

Crossrefs

Programs

  • Magma
    [n: n in [1..500 by 2] | IsPrime(2*n+1)]; // Vincenzo Librandi, Aug 14 2018
  • Mathematica
    Select[Range[1,301,2],PrimeQ[2#+1]&] (* Harvey P. Dale, May 08 2012 *)
  • PARI
    forstep( k=1,250,2, isprime(2*k+1) && print1(k", ")) \\ M. F. Hasler, Feb 25 2011
    
  • PARI
    forprime( p=1,500, p%4==3 || next; print1(p\2", ")) \\ M. F. Hasler, Feb 25 2011
    

Formula

a(n) = floor(A002145(n)/2). - M. F. Hasler, Feb 25 2011

A124041 Numbers k such that 2*k+1, 4*k+1 and 8*k+1 are primes.

Original entry on oeis.org

9, 39, 165, 219, 249, 309, 414, 534, 639, 765, 1044, 1065, 1089, 1155, 1395, 1509, 1530, 1554, 1590, 1884, 2079, 2115, 2130, 2310, 2319, 2430, 2475, 2709, 2874, 3060, 3105, 3354, 3420, 3684, 3705, 3780, 3819, 4104, 4314, 4554, 4599, 4659, 4869, 5160
Offset: 1

Views

Author

Artur Jasinski, Nov 02 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[3*Range[2000], And @@ PrimeQ /@ ({2, 4, 8}*# + 1) &] (* Ray Chandler, Dec 06 2006 *)

A124412 Numbers k such that 2*k+1, 4*k+1, 8*k+1 and 16*k+1 are primes.

Original entry on oeis.org

765, 1065, 1155, 1530, 3105, 3420, 3705, 5160, 6840, 7695, 8325, 9060, 11265, 11505, 12195, 14835, 15390, 15885, 16650, 17655, 20745, 22185, 23205, 27300, 28155, 28995, 30165, 30690, 33300, 33825, 39015, 41715, 42690, 44370, 48465, 49935
Offset: 1

Views

Author

Artur Jasinski, Nov 02 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[15*Range[3500], And @@ PrimeQ /@ ({2, 4, 8, 16}*# + 1) &] (* Ray Chandler, Nov 21 2006 *)

A177771 a(n) = (prime(n) - 1)!.

Original entry on oeis.org

1, 2, 24, 720, 3628800, 479001600, 20922789888000, 6402373705728000, 1124000727777607680000, 304888344611713860501504000000, 265252859812191058636308480000000
Offset: 1

Views

Author

Giovanni Teofilatto, May 13 2010

Keywords

Comments

By Wilson's theorem, a(n) = -1 (mod p) where p is the n-th prime. - Charles R Greathouse IV, Sep 04 2013

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 21.

Crossrefs

Programs

Formula

a(n) = A010050(A005097(n-1)). a(n)^2 = A177926(n). - R. J. Mathar, May 24 2010

A193773 Number of ways to write n as 2*x*y - x - y with 1 <= x <= y.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 2, 2, 1, 2, 2, 1, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 3, 1, 2, 2, 1, 2, 2, 2, 1, 3, 1, 1, 4, 1, 1, 2, 1, 2, 3, 2, 2, 2, 2, 1, 2, 1, 2, 4, 1, 1, 2, 2, 2, 3, 1, 1, 3, 2, 1, 2, 2, 1, 4, 1, 2, 3
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 02 2013

Keywords

Comments

a(A005097(n)) = 1; for n > 1: a(A047845(n)) > 1. - Reinhard Zumkeller, Jan 02 2013
Number of ways to write 2*n+1 as a difference of two squares. Note that 2*(2*x*y - x - y) + 1 = (2*x - 1) * (2*y - 1) = (y + x - 1)^2 - (y - x)^2. - Michael Somos, Dec 23 2018

Examples

			G.f. = 1 + x + x^2 + x^3 + 2*x^4 + x^5 + x^6 + 2*x^7 + x^8 + x^9 + 2*x^10 + ... - _Michael Somos_, Dec 23 2018
		

Crossrefs

Programs

  • Haskell
    a193773 n = length [() | x <- [1 .. n + 1],
                             let (y,m) = divMod (x + n) (2 * x - 1),
                             x <= y, m == 0]
    
  • Mathematica
    a[ n_] := If[ n < 0, 0, Ceiling[ DivisorSigma[0, 2 n + 1] / 2]]; (* Michael Somos, Dec 23 2018 *)
  • PARI
    {a(n) = if(n < 0, 0, (numdiv(2*n+1) + 1)\2)}; /* Michael Somos, Dec 23 2018 */

Formula

a(n) = ceiling(A000005(2*n+1) / 2). - Michael Somos, Dec 23 2018

A104636 Even n such that 2n+1 is prime.

Original entry on oeis.org

2, 6, 8, 14, 18, 20, 26, 30, 36, 44, 48, 50, 54, 56, 68, 74, 78, 86, 90, 96, 98, 114, 116, 120, 128, 134, 138, 140, 146, 156, 158, 168, 174, 176, 186, 194, 198, 200, 204, 210, 216, 224, 228, 230, 254, 260, 270, 278, 284, 288, 296, 300, 306, 308, 320, 326, 330
Offset: 1

Views

Author

Zak Seidov, Mar 18 2005

Keywords

Comments

If q = 2*n + 1 is prime, and n is even, q divides (n!)^2 + 1. - Arkadiusz Wesolowski, Sep 06 2012

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 300, 2], PrimeQ[2*# + 1] &]

Extensions

a(48)-a(57) from Arkadiusz Wesolowski, Sep 06 2012

A124408 Numbers k such that 2k+1, 4k+1 and 6k+1 are primes.

Original entry on oeis.org

1, 3, 18, 105, 135, 153, 165, 168, 300, 363, 585, 618, 648, 765, 828, 1110, 1140, 1278, 1518, 1530, 1533, 2130, 2223, 2400, 2475, 2613, 2790, 2925, 3075, 3180, 3345, 3420, 3483, 3810, 3840, 3843, 3933, 4008, 4083, 4095, 4143, 4260, 4263, 4323, 4470, 4545
Offset: 1

Views

Author

Artur Jasinski, Oct 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[4600], And @@ PrimeQ /@ ({2, 4, 6}*# + 1) &] (* Ray Chandler, Nov 20 2006 *)
  • PARI
    is(k) = sum(j = 1, 3, isprime(2*j*k+1)) == 3; \\ Jinyuan Wang, Aug 04 2019

A124409 Numbers k such that 2k+1, 4k+1, 6k+1 and 8k+1 are primes.

Original entry on oeis.org

165, 765, 1530, 2130, 2475, 3420, 5415, 7695, 9060, 11505, 12705, 13020, 15885, 16650, 20055, 20745, 22530, 24915, 26940, 29670, 32925, 35070, 36885, 39270, 44370, 47730, 48465, 54735, 55860, 56310, 58860, 65655, 66600, 67365, 67650
Offset: 1

Views

Author

Artur Jasinski, Oct 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[68000], And @@ PrimeQ /@ ({2, 4, 6, 8}*# + 1) &] (* Ray Chandler, Nov 20 2006 *)
  • PARI
    is(k) = sum(j = 1, 4, isprime(2*j*k+1)) == 4; \\ Jinyuan Wang, Aug 04 2019

A124410 Numbers k such that 2k+1, 4k+1, 6k+1, 8k+1 and 10k+1 are primes.

Original entry on oeis.org

5415, 12705, 13020, 44370, 82950, 98280, 105525, 112200, 115140, 123855, 134250, 134460, 187740, 188745, 210165, 225705, 247170, 256410, 296310, 302085, 367875, 375645, 382890, 399585, 404040, 476340, 487830, 526845, 532095, 566430, 578085
Offset: 1

Views

Author

Artur Jasinski, Oct 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[600000], And @@ PrimeQ /@ ({2, 4, 6, 8, 10}*# + 1) &] (* Ray Chandler, Nov 20 2006 *)
  • PARI
    is(k) = sum(j = 1, 5, isprime(2*j*k+1)) == 5; \\ Jinyuan Wang, Aug 04 2019

A124411 Numbers k such that 2k+1, 4k+1, 6k+1, 8k+1, 10k+1 and 12k+1 are primes.

Original entry on oeis.org

12705, 13020, 105525, 256410, 966840, 1707510, 1944495, 2310000, 2478630, 3132675, 3836070, 3976770, 4112430, 4532325, 5499585, 5920005, 6610485, 7390845, 8552250, 10739505, 11120340, 12231450, 12338130, 13243230, 16467255
Offset: 1

Views

Author

Artur Jasinski, Oct 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10^7], And @@ PrimeQ /@ ({2, 4, 6, 8, 10, 12}*# + 1) &] (* Ray Chandler, Nov 20 2006 *)
  • PARI
    is(k) = sum(j = 1, 6, isprime(2*j*k+1)) == 6; \\ Jinyuan Wang, Aug 04 2019

Extensions

Extended by Ray Chandler, Nov 20 2006
Previous Showing 41-50 of 144 results. Next