A323788
Number of non-isomorphic weight-n sets of multisets of multisets.
Original entry on oeis.org
1, 1, 5, 19, 88, 391, 1995, 10281
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(3) = 19 multiset partitions:
{{1}} {{11}} {{111}}
{{12}} {{112}}
{{1}{1}} {{123}}
{{1}{2}} {{1}{11}}
{{1}}{{2}} {{1}{12}}
{{1}{23}}
{{2}{11}}
{{1}}{{11}}
{{1}{1}{1}}
{{1}}{{12}}
{{1}{1}{2}}
{{1}}{{23}}
{{1}{2}{3}}
{{2}}{{11}}
{{1}}{{1}{1}}
{{1}}{{1}{2}}
{{1}}{{2}{3}}
{{2}}{{1}{1}}
{{1}}{{2}}{{3}}
Cf.
A005121,
A007716,
A049311,
A050343,
A283877,
A306186,
A316980,
A317791,
A318564,
A318565,
A318566,
A318812.
A330665
Number of balanced reduced multisystems of maximal depth whose atoms are the prime indices of n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 3, 1, 5, 1, 1, 1, 7, 1, 1, 1, 5, 1, 3, 1, 2, 2, 1, 1, 16, 1, 2, 1, 2, 1, 5, 1, 5, 1, 1, 1, 11, 1, 1, 2, 16, 1, 3, 1, 2, 1, 3, 1, 27, 1, 1, 2, 2, 1, 3, 1, 16, 2, 1, 1, 11, 1
Offset: 1
The a(n) multisystems for n = 2, 6, 12, 24, 48:
{1} {1,2} {{1},{1,2}} {{{1}},{{1},{1,2}}} {{{{1}}},{{{1}},{{1},{1,2}}}}
{{2},{1,1}} {{{1,1}},{{1},{2}}} {{{{1}}},{{{1,1}},{{1},{2}}}}
{{{1}},{{2},{1,1}}} {{{{1},{1}}},{{{1}},{{1,2}}}}
{{{1,2}},{{1},{1}}} {{{{1},{1,1}}},{{{1}},{{2}}}}
{{{2}},{{1},{1,1}}} {{{{1,1}}},{{{1}},{{1},{2}}}}
{{{{1}}},{{{1}},{{2},{1,1}}}}
{{{{1}}},{{{1,2}},{{1},{1}}}}
{{{{1},{1}}},{{{2}},{{1,1}}}}
{{{{1},{1,2}}},{{{1}},{{1}}}}
{{{{1,1}}},{{{2}},{{1},{1}}}}
{{{{1}}},{{{2}},{{1},{1,1}}}}
{{{{1},{2}}},{{{1}},{{1,1}}}}
{{{{1,2}}},{{{1}},{{1},{1}}}}
{{{{2}}},{{{1}},{{1},{1,1}}}}
{{{{2}}},{{{1,1}},{{1},{1}}}}
{{{{2},{1,1}}},{{{1}},{{1}}}}
The last nonzero term in row n of
A330667 is a(n).
The non-maximal version is
A318812.
Other labeled versions are
A330675 (strongly normal) and
A330676 (normal).
Cf.
A001055,
A005121,
A005804,
A050336,
A213427,
A292505,
A317144,
A318849,
A320160,
A330474,
A330475,
A330679.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
A330676
Number of balanced reduced multisystems of weight n and maximum depth whose atoms cover an initial interval of positive integers.
Original entry on oeis.org
1, 1, 2, 8, 70, 1012, 21944, 665708, 26917492, 1399033348, 90878863352, 7214384973908, 687197223963640, 77354805301801012, 10158257981179981304, 1539156284259756811748, 266517060496258245459352, 52301515332984084095078308, 11546416513975694879642736152
Offset: 0
The a(0) = 1 through a(3) = 8 multisystems:
{} {1} {1,1} {{1},{1,1}}
{1,2} {{1},{1,2}}
{{1},{2,2}}
{{1},{2,3}}
{{2},{1,1}}
{{2},{1,2}}
{{2},{1,3}}
{{3},{1,2}}
The case with all atoms equal is
A000111.
The case with all atoms different is
A006472.
The version allowing all depths is
A330655.
The version where the atoms are the prime indices of n is
A330665.
The strongly normal version is
A330675.
The version where the degrees are the prime indices of n is
A330728.
Multiset partitions of normal multisets are
A255906.
Series-reduced rooted trees with normal leaves are
A316651.
Cf.
A000669,
A001055,
A005121,
A005804,
A318812,
A330469,
A330474,
A330654,
A330664,
A330677,
A330679.
-
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n, k)={my(v=vector(n), u=vector(n)); v[1]=k; for(n=1, #v, for(i=n, #v, u[i] += v[i]*(-1)^(i-n)*binomial(i-1, n-1)); v=EulerT(v)); u}
seq(n)={concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k))))} \\ Andrew Howroyd, Dec 30 2020
A131407
Repeated set partitions or nested set partitions. Possible coalitions among n persons.
Original entry on oeis.org
1, 1, 2, 11, 95, 1307, 27035, 788279, 30812087, 1554832679, 98387784047, 7628836816295, 711320467520855, 78520062277781087, 10127079289703949695, 1508987827451079129599, 257250406707409951420079, 49750955749787132205813743, 10833471589449269308161546191
Offset: 0
a(3)=11 because we have
{{1,2,3}},
{{1,2},{3}},
{{1,3},{2}},
{{2,3},{1}},
{{{1,2},{3}}},
{{{1,2}},{{3}}},
{{{1,3},{2}}},
{{{1,3}},{{2}}},
{{{2,3},{1}}},
{{{2,3}},{{1}}},
{{1},{2},{3}}.
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 319 and 556.
-
rctlnn := proc(n::nonnegint) # Thanks to Joe Riel, who suggested the use of # "procname" instead of "rctlnn" within the program.
local j; option remember; if n = 0 then 1; else bell(n)+add(stirling2(n,j)*procname(j), j=2..n-1); end if; end proc:
# second Maple program:
a:= proc(n) option remember; uses combinat;
bell(n) + add(stirling2(n, i)*a(i), i=2..n-1)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Apr 05 2012
-
a[n_] := a[n] = If[n<2, 1, BellB[n] + Sum[StirlingS2[n, i]*a[i], {i, 2, n-1}]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)
A318846
Number of balanced reduced multisystems whose atoms cover an initial interval of positive integers with multiplicities equal to the prime indices of n.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 6, 4, 15, 11, 20, 21, 90, 51, 80, 32, 468, 166, 2910, 124, 521, 277, 20644, 266, 621, 1761, 1866, 841, 165874, 1374, 1484344, 436, 3797, 12741, 5383, 3108, 14653890, 103783, 31323, 2294, 158136988, 12419, 1852077284, 6382, 20786, 939131, 23394406084
Offset: 1
The a(12) = 21 multisystems on {1,1,2,3} (commas elided):
{1123} {{1}{123}} {{1}{1}{23}} {{{1}}{{1}{23}}}
{{2}{113}} {{1}{2}{13}} {{{23}}{{1}{1}}}
{{3}{112}} {{1}{3}{12}} {{{1}}{{2}{13}}}
{{11}{23}} {{2}{3}{11}} {{{2}}{{1}{13}}}
{{12}{13}} {{{13}}{{1}{2}}}
{{{1}}{{3}{12}}}
{{{3}}{{1}{12}}}
{{{12}}{{1}{3}}}
{{{2}}{{3}{11}}}
{{{3}}{{2}{11}}}
{{{11}}{{2}{3}}}
Cf.
A001055,
A002846,
A005121,
A181821,
A213427,
A281118,
A281119,
A305936,
A318762,
A318812,
A318813.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
tmsp[m_]:=Prepend[Join@@Table[tmsp[c],{c,Select[mps[m],1
A330471
Number of series/singleton-reduced rooted trees on strongly normal multisets of size n.
Original entry on oeis.org
1, 1, 2, 9, 69, 623, 7803, 110476, 1907428
Offset: 0
The a(0) = 1 through a(3) = 9 trees:
() (1) (11) (111)
(12) (112)
(123)
((1)(11))
((1)(12))
((1)(23))
((2)(11))
((2)(13))
((3)(12))
The a(4) = 69 trees, with singleton leaves (x) replaced by just x:
(1111) (1112) (1122) (1123) (1234)
(1(111)) (1(112)) (1(122)) (1(123)) (1(234))
(11(11)) (11(12)) (11(22)) (11(23)) (12(34))
((11)(11)) (12(11)) (12(12)) (12(13)) (13(24))
(1(1(11))) (2(111)) (2(112)) (13(12)) (14(23))
((11)(12)) (22(11)) (2(113)) (2(134))
(1(1(12))) ((11)(22)) (23(11)) (23(14))
(1(2(11))) (1(1(22))) (3(112)) (24(13))
(2(1(11))) ((12)(12)) ((11)(23)) (3(124))
(1(2(12))) (1(1(23))) (34(12))
(2(1(12))) ((12)(13)) (4(123))
(2(2(11))) (1(2(13))) ((12)(34))
(1(3(12))) (1(2(34)))
(2(1(13))) ((13)(24))
(2(3(11))) (1(3(24)))
(3(1(12))) ((14)(23))
(3(2(11))) (1(4(23)))
(2(1(34)))
(2(3(14)))
(2(4(13)))
(3(1(24)))
(3(2(14)))
(3(4(12)))
(4(1(23)))
(4(2(13)))
(4(3(12)))
The case with all atoms different is
A000311.
The case with all atoms equal is
A196545.
The case where the leaves are sets is
A330628.
The version for just normal (not strongly normal) is
A330654.
Cf.
A000669,
A004114,
A005121,
A005804,
A281118,
A318812,
A318848,
A319312,
A330465,
A330467,
A330475.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
mtot[m_]:=Prepend[Join@@Table[Tuples[mtot/@p],{p,Select[mps[m],Length[#]>1&&Length[#]
A008826
Triangle of coefficients from fractional iteration of e^x - 1.
Original entry on oeis.org
1, 1, 3, 1, 13, 18, 1, 50, 205, 180, 1, 201, 1865, 4245, 2700, 1, 875, 16674, 74165, 114345, 56700, 1, 4138, 155477, 1208830, 3394790, 3919860, 1587600, 1, 21145, 1542699, 19800165, 90265560, 182184030, 167310360, 57153600, 1, 115973, 16385857, 335976195, 2338275240, 7342024200, 11471572350, 8719666200, 2571912000
Offset: 2
Triangle starts:
1;
1, 3;
1, 13, 18;
1, 50, 205, 180;
1, 201, 1865, 4245, 2700;
1, 875, 16674, 74165, 114345, 56700;
1, 4138, 155477, 1208830, 3394790, 3919860, 1587600;
...
The f-vector of (the fine subdivision of) the Bergman complex of the complete graph K_3 is (1, 3). The f-vector of the Bergman complex of K_4 is (1, 13, 18). - _Harry Richman_, Mar 30 2023
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 148.
Alternating row sums are signed factorials
A133942(n-1).
Cf.
A000110,
A000111,
A000258,
A002846,
A005121,
A008277,
A306186,
A317176,
A318813,
A320154,
A330667,
A330679,
A330784.
-
b:= proc(n) option remember; expand(`if`(n=1, 1,
add(Stirling2(n, j)*b(j)*x, j=0..n-1)))
end:
T:= (n, k)-> coeff(b(n), x, k):
seq(seq(T(n, k), k=1..n-1), n=2..10); # Alois P. Heinz, Mar 31 2023
-
a[n_, x_] := Sum[ StirlingS2[n, k]*a[k, x]*x, {k, 0, n-1}]; a[1, ] = 1; Table[ CoefficientList[ a[n, x], x] // Rest, {n, 2, 10}] // Flatten (* _Jean-François Alcover, Dec 11 2012, after Vladeta Jovovic *)
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
tots[m_]:=Prepend[Join@@Table[tots[p],{p,Select[sps[m],1Gus Wiseman, Jan 02 2020 *)
A330664
Number of non-isomorphic balanced reduced multisystems of maximum depth whose degrees (atom multiplicities) are the weakly decreasing prime indices of n.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 2, 1, 4, 5, 5, 7, 16, 16, 27, 2, 61, 33, 272, 27, 123, 61, 1385, 27, 78, 272, 95, 123, 7936, 362
Offset: 1
Non-isomorphic representatives of the a(n) multisystems for n = 2, 3, 6, 9, 10, 12 (commas and outer brackets elided):
1 11 {1}{12} {{1}}{{1}{22}} {{1}}{{1}{12}} {{1}}{{1}{23}}
{2}{11} {{11}}{{2}{2}} {{11}}{{1}{2}} {{11}}{{2}{3}}
{{1}}{{2}{12}} {{1}}{{2}{11}} {{1}}{{2}{13}}
{{12}}{{1}{2}} {{12}}{{1}{1}} {{12}}{{1}{3}}
{{2}}{{1}{11}} {{2}}{{1}{13}}
{{2}}{{3}{11}}
{{23}}{{1}{1}}
The non-maximal version is
A330666.
The case of constant or strict atoms is
A000111.
Non-isomorphic multiset partitions whose degrees are the prime indices of n are
A318285.
Cf.
A004114,
A005121,
A007716,
A048816,
A141268,
A306186,
A318846,
A318848,
A330470,
A330474,
A330663.
A086555
E.g.f. satisfies F(x) = 1/2 * (F(-log(1-x)) + x).
Original entry on oeis.org
1, 1, 5, 47, 719, 16299, 513253, 21430513, 1145710573, 76317960163, 6197399680779, 602640663660199, 69134669061681469, 9239224408001877873, 1422887941494773642817, 250160794466824215921275
Offset: 1
-
Clear[a]; a[1] = 1; a[n_] := a[n] = Sum[Abs[StirlingS1[n, k]]*a[k], {k, 1, n-1}]; Table[a[n], {n, 1, 20}] (* Vaclav Kotesovec, May 29 2019 *)
A330668
Number of non-isomorphic balanced reduced multisystems of weight n whose leaves (which are multisets of atoms) are all sets.
Original entry on oeis.org
1, 1, 1, 3, 22, 204, 2953
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(4) = 22 multisystems:
{1} {1,2} {1,2,3} {1,2,3,4}
{{1},{1,2}} {{1},{1,2,3}}
{{1},{2,3}} {{1,2},{1,2}}
{{1,2},{1,3}}
{{1},{2,3,4}}
{{1,2},{3,4}}
{{1},{1},{1,2}}
{{1},{1},{2,3}}
{{1},{2},{1,2}}
{{1},{2},{1,3}}
{{1},{2},{3,4}}
{{{1}},{{1},{1,2}}}
{{{1}},{{1},{2,3}}}
{{{1,2}},{{1},{1}}}
{{{1}},{{2},{1,2}}}
{{{1,2}},{{1},{2}}}
{{{1}},{{2},{1,3}}}
{{{1,2}},{{1},{3}}}
{{{1}},{{2},{3,4}}}
{{{1,2}},{{3},{4}}}
{{{2}},{{1},{1,3}}}
{{{2,3}},{{1},{1}}}
The case with all atoms different is
A318813.
The version where the leaves are multisets is
A330474.
Unlabeled series-reduced rooted trees whose leaves are sets are
A330624.
Cf.
A000311,
A004114,
A005121,
A005804,
A007716,
A048816,
A141268,
A283877,
A306186,
A318812,
A320154,
A330470,
A330628,
A330663.
Comments