cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 60 results. Next

A112332 a(n) = Product_{k=0..n-1} k!*binomial(2k,k).

Original entry on oeis.org

1, 1, 2, 24, 2880, 4838400, 146313216000, 97339256340480000, 1683704371913057894400000, 873705178746128941669416960000000, 15414977576506278044562764045746176000000000, 10334857226047177887548812577909403133201612800000000000
Offset: 0

Views

Author

Paul Barry, Sep 04 2005

Keywords

Crossrefs

Programs

  • Maple
    seq(mul(mul((j+k),j=1..k), k=1..n), n=-1..9); # Zerinvary Lajos, Sep 21 2007
  • Mathematica
    Table[Product[(2*k)!/k!,{k,0,n-1}],{n,0,10}] (* Vaclav Kotesovec, Jul 11 2015 *)

Formula

a(n)=denominator(Product{k=0..n-1, (2k+1)!/(n+k)!}).
G.f.: 1+ x*G(0)/2, where G(k)= 1 + 1/(1 - 1/(1 + 1/((2*k+2)!/(k+1)!)/x/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 15 2013
a(n) ~ A^(1/2) * 2^(n^2 - n/2 - 7/24) * n^(n^2/2 - n/2 + 1/24) / exp(3*n^2/4 - n/2 + 1/24), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Jul 11 2015
From Alois P. Heinz, Jun 30 2022: (Start)
a(n) = Product_{i=1..n-1} Product_{j=i..n-1} (i+j).
a(n) = A110131(n). (End)

A048601 Robbins triangle read by rows: T(n,k) = number of alternating sign n X n matrices with a 1 at top of column k (n >= 1, 1<=k<=n).

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 7, 14, 14, 7, 42, 105, 135, 105, 42, 429, 1287, 2002, 2002, 1287, 429, 7436, 26026, 47320, 56784, 47320, 26026, 7436, 218348, 873392, 1813968, 2519400, 2519400, 1813968, 873392, 218348, 10850216, 48825972, 113927268, 179028564
Offset: 1

Views

Author

Keywords

Comments

An alternating sign matrix is a matrix of 0's and 1's such that (a) the sum of each row and column is 1; (b) the nonzero entries in each row and column alternate in sign.
Named after the American mathematician David Peter Robbins (1942-2003). - Amiram Eldar, Jun 13 2021

Examples

			Triangle begins:
     1,
     1,     1,
     2,     3,     2,
     7,    14,    14,     7,
    42,   105,   135,   105,    42,
   429,  1287,  2002,  2002,  1287,   429,
  7436, 26026, 47320, 56784, 47320, 26026, 7436,
  ...
		

References

  • David Bressoud, Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture, Cambridge University Press, 1999, p. 5.

Crossrefs

Row sums (also borders) of triangle give A005130. Cf. A051106.
A210697 is a companion triangle.

Programs

  • Maple
    T:=(n,k)-> binomial(n+k-2, k-1)*((2*n-k-1)!/(n-k)!)*product(((3*j+1)!/(n+j)!),j=0..n-2);
  • Mathematica
    t[n_, k_] := Binomial[n+k-2, k-1]*((2*n-k-1)!/(n-k)!)*Product[((3*j+1)!/(n+j)!), {j, 0, n-2}]; Table[t[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 12 2012, from formula *)

Formula

T(n,k) = binomial(n+k-2, k-1)*((2*n-k-1)!/(n-k)!) * product(((3*j+1)!/(n+j)!), j=0..n-2);

Extensions

More terms from James Sellers

A005157 Number of totally symmetric plane partitions that fit in an n X n X n box.

Original entry on oeis.org

1, 2, 5, 16, 66, 352, 2431, 21760, 252586, 3803648, 74327145, 1885102080, 62062015500, 2652584509440, 147198472495020, 10606175914819584, 992340657705109416, 120567366227960791040, 19023173201224270401428, 3897937005297330777227264
Offset: 0

Views

Author

Keywords

Comments

Also, number of 2-dimensional shifted complexes on n+1 nodes. [Klivans]
Also the number of totally symmetric partitions which fit in an (n-1)-dimensional box with side length 4 (for n>0). - Graham H. Hawkes, Jan 11 2014
Suppose we index this sequence slightly differently. Let the elements of a partition be represented by points rather than boxes, as in a Ferrers diagram. In this case, a 1 X 1 X 1 (closed) box would fit 8 points -- one at each vertex of the box, and we use the convention that a 0 X 0 X 0 (closed) box contains exactly one point. Using this indexing, the sequence begins (offset is still 0) 2,5,16,... rather than 1,2,5,... If we use the same method of indexing for all other dimensions, then we have the following remarkable result: The number of totally symmetric partitions which fit inside a d-dimensional box with side length n is equal to the number of totally symmetric partitions which fit inside an n-dimensional box of side length d. - Graham H. Hawkes, Jan 11 2014
For two other contexts where this sequence arises, see the Knuth (2019) link (noncrossing paths among the 2(2^n-1) paths defined in that note; independent sets of paths among the first 2^n-1 of those). - N. J. A. Sloane, Feb 09 2019, based on email from Don Knuth.

Examples

			a(2) = 5 because we have: void, 1, 21/1, 22/21, and 22/22.
		

References

  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; Eq. (6.8), p. 198 (corrected).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A214564.

Programs

  • Maple
    A005157 := proc(n) local i,j; mul(mul((i+j+n-1)/(i+2*j-2),j=i..n),i=1..n); end;
  • Mathematica
    Table[Product[(i+j+k-1)/(i+j+k-2),{i,n},{j,i,n},{k,j,n}],{n,0,20}] (* Harvey P. Dale, Jul 17 2011 *)
  • PARI
    A005157(n)=prod(i=1,n,prod(j=i,n,(i+j+n-1)/(i+2*j-2))) \\ M. F. Hasler, Sep 26 2018

Formula

a(n) = Product_{i=1..n} Product_{j=i..n} Product_{k=j..n} (i+j+k-1)/(i+j+k-2). - Paul Barry, May 13 2008
a(n) ~ exp(1/72) * GAMMA(1/3)^(2/3) * n^(7/72) * 3^(3*n*(n+1)/4 + 11/72) / (A^(1/6) * Pi^(1/3) * 2^(n*(2*n+1)/2 + 13/24)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 01 2015
a(n) = sqrt(A323848(n+1,n)) for n >= 1. [proof by Nikolai Beluhov; see Knuth (2019) link] - Alois P. Heinz, Feb 10 2019
Apparently, a(n) = Sum_{k=0..n} A184173(n,k). - Alois P. Heinz, Feb 11 2019
Conjectures: if p == 1 (mod 6) is prime then a(p) == 2^((p+5)/6) (mod p^2); if p == 5 (mod 6) is prime then a(p) == 2^((p+1)/6) (mod p^2) (checked up to p = 1009). - Peter Bala, Feb 17 2023

A005158 Number of alternating sign n X n matrices invariant under a half-turn.

Original entry on oeis.org

1, 2, 3, 10, 25, 140, 588, 5544, 39204, 622908, 7422987, 198846076
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.

Crossrefs

A059475(n) = a(2n).

Formula

Robbins gives simple (conjectured) formulas related to this sequence in Section 3.3.
a(n) = a(n-1) * (1 + [n even]/3) * C(n\2*3, n\2) / C(n\2*2, n\2) for all n > 1, where C(.,.) are the binomial coefficients, n\2 := floor(n/2) and [n even] = 1 if n is even, 0 else (Iverson bracket). [From Robbins conjectured(!) formulas.] - M. F. Hasler, Jun 15 2019

A006366 Number of cyclically symmetric plane partitions in the n-cube; also number of 2n X 2n half-turn symmetric alternating sign matrices divided by number of n X n alternating sign matrices.

Original entry on oeis.org

1, 2, 5, 20, 132, 1452, 26741, 826540, 42939620, 3752922788, 552176360205, 136830327773400, 57125602787130000, 40191587143536420000, 47663133295107416936400, 95288872904963020131203520, 321195665986577042490185260608
Offset: 0

Views

Author

Keywords

Comments

In the 1995 Encyclopedia of Integer Sequences this sequence appears twice, as both M1529 and M1530.

References

  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; Eq. (6.7) on page 198, except the formula given is incorrect. It should be as shown here.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.

Crossrefs

Programs

  • Maple
    A006366 := proc(n) local i, j; mul((3*i - 1)*mul((n + i + j - 1)/(2*i + j - 1), j = i .. n)/(3*i - 2), i = 1 .. n) end;
  • Mathematica
    Table[Product[(3i-1)/(3i-2) Product[(n+i+j-1)/(2i+j-1),{j,i,n}],{i,n}],{n,0,20}] (* Harvey P. Dale, Apr 17 2013 *)
  • PARI
    a(n)=prod(i=0,n-1,(3*i+2)*(3*i)!/(n+i)!)

Formula

a(n) = Product_{i=1..n} (((3*i-1)/(3*i-2))*Product_{j=i..n} (n+i+j-1)/(2*i+j-1)).
a(n) ~ exp(1/36) * GAMMA(1/3)^(4/3) * n^(7/36) * 3^(3*n^2/2 + 11/36) / (A^(1/3) * Pi^(2/3) * 2^(2*n^2 + 7/12)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 01 2015

A059475 Number of 2n X 2n half-turn symmetric alternating-sign matrices (HTSASM's).

Original entry on oeis.org

1, 2, 10, 140, 5544, 622908, 198846076, 180473355920, 465904151957920, 3422048076740462480, 71525763221287897903500, 4254840960508487045451825000, 720428791920558617462950575000000, 347230535542092373572967034254050000000
Offset: 0

Views

Author

N. J. A. Sloane, Feb 04 2001

Keywords

Crossrefs

Even-numbered terms of A005158.

Programs

Formula

a(n) = A005130(n)*A006366(n).
a(n) = A049503(n)*Product_{k=0..n-1} (3*k+2)/(3*k+1). - Seiichi Manyama, Jul 29 2018
a(n) ~ exp(1/18) * Gamma(1/3)^(2/3) * n^(1/18) * 3^(3*n^2 + 1/9) / (A^(2/3) * Pi^(1/3) * 2^(4*n^2 + 1/6)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Jan 26 2020

A297622 Triangle read by rows: a(n,k) is the number of k X n matrices which are the first k rows of an alternating sign matrix of size n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 7, 7, 1, 4, 16, 42, 42, 1, 5, 30, 149, 429, 429, 1, 6, 50, 406, 2394, 7436, 7436, 1, 7, 77, 938, 9698, 65910, 218348, 218348, 1, 8, 112, 1932, 31920, 403572, 3096496, 10850216, 10850216, 1, 9, 156, 3654, 90576, 1931325, 29020904, 247587252, 911835460, 911835460
Offset: 0

Views

Author

Ben Branman, Jan 01 2018

Keywords

Comments

Comments: An alternating sign matrix of size n is an n X n matrix of 0's, 1's and -1's such that (a) the sum of each row and column is 1; (b) the nonzero entries in each row and column alternate in sign. If k < n, we relax the condition on the columns slightly, and require that
(a) If a column is not all zeros, the first nonzero entry is 1;
(b) The nonzero entries in each column alternate in sign.
The second reference gives a sequence of partially ordered sets Phi_n such that the alternating sign matrices of size n are in bijection with the maximal chains of Phi_n. This sequence gives the number of saturated chains in Phi_n which begin at the root vertex and end at any vertex of height k.

Examples

			a(3,3)=7 because there are seven alternating sign matrices of size 3.  Six of these are the permutation matrices, and the seventh is the matrix ((0,1,0),(1,-1,1),(0,1,0)).
a(n,0)=1 because there is only one possible n X 0 matrix: the empty matrix.
a(4,4)=42 because there are 42 4 X 4 alternating sign matrices.  If we look only at the first two rows in each of the 42 4 X 4 alternating sign matrices, we get 16 distinct 2 X 4 matrices, and so a(4,2)=16.  The 16 2 X 4 matrices are
  {{0,  0,  0,  1}, {0,  0,  1,  0}},
  {{0,  0,  0,  1}, {0,  1,  0,  0}},
  {{0,  0,  0,  1}, {1,  0,  0,  0}},
  {{0,  0,  1,  0}, {0,  0,  0,  1}},
  {{0,  0,  1,  0}, {0,  1,  0,  0}},
  {{0,  0,  1,  0}, {1,  0,  0,  0}},
  {{0,  1,  0,  0}, {0,  0,  0,  1}},
  {{0,  1,  0,  0}, {0,  0,  1,  0}},
  {{0,  1,  0,  0}, {1,  0,  0,  0}},
  {{1,  0,  0,  0}, {0,  0,  0,  1}},
  {{1,  0,  0,  0}, {0,  0,  1,  0}},
  {{1,  0,  0,  0}, {0,  1,  0,  0}},
  {{0,  0,  1,  0}, {0,  1, -1,  1}},
  {{0,  0,  1,  0}, {1,  0, -1,  1}},
  {{0,  1,  0,  0}, {1, -1,  0,  1}},
  {{0,  1,  0,  0}, {1, -1,  1,  0}}.
Triangle begins:
=============================================================================================
n\k|  0  1   2    3      4       5         6          7           8            9           10
---|-----------------------------------------------------------------------------------------
_0 |  1
_1 |  1  1
_2 |  1  2   2
_3 |  1  3   7    7
_4 |  1  4  16   42     42
_5 |  1  5  30  149    429     429
_6 |  1  6  50  406   2394    7436      7436
_7 |  1  7  77  938   9698   65910    218348     218348
_8 |  1  8 112 1932  31920  403572   3096496   10850216    10850216
_9 |  1  9 156 3654  90576 1931325  29020904  247587252   911835460    911835460
10 |  1 10 210 6468 229680 7722110 205140540 3586953760 33631201864 129534272700 129534272700
  ...
		

References

  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999

Crossrefs

Cf. A005130.

Programs

  • Mathematica
    (* First we compute the Hasse diagram for Terwilliger's poset as a directed graph object. *)
    ToAlternatingSignList[list_] :=
    Module[{s = 1},
      Table[If[list[[k]] == 0, 0, (s = -s); -s], {k, 1, Length[list]}]]
    AllAlternatingSignRows[n_] :=
    AllAlternatingSignRows[
       n] = (ToAlternatingSignList /@
        Select[Table[IntegerDigits[q, 2, n], {q, 0, 2^n - 1}],
         OddQ[Total[#]] &])
    output[vertex_] :=
    Select[Table[
       vertex + li, {li, AllAlternatingSignRows[Length[vertex]]}],
      And[Min[#] >= 0, Max[#] <= 1] &]
    elist[vertex_] := ((vertex \[DirectedEdge] #) & /@ output[vertex])
    ASMPoset[n_] :=
    ASMPoset[n] =
      Graph[Flatten[
        Table[elist[IntegerDigits[k, 2, n]], {k, 0, 2^n - 1}]]]
    (*Now we compute the number of paths of length k starting at the root vertex.*)
    ASMPosetAdjacencyMatrix[n_] := Normal[AdjacencyMatrix[ASMPoset[n]]]
    Table[Total /@
      First /@ NestList[ASMPosetAdjacencyMatrix[n].# &,
        IdentityMatrix[2^n], n], {n, 1, 10}]

Formula

a(n,0) = 1;
a(n,1) = n;
a(n,n-1) = a(n,n) = A005130(n) = Product_{k=0..n-1} (3k+1)!/(n+k)!.

A003827 'Core' alternating sign n X n matrices, i.e., those that are not 'blown up' from a smaller matrix by inserting row i, column j with a_ij = 1 and all other entries in that row and column equal to 0.

Original entry on oeis.org

1, 2, 59, 1292, 53862, 3615208, 392961340, 68986099580, 19595297946515, 9048133666290540, 6832278662513786160, 8489106538840284343800, 17456177529017536829265000, 59700294731704834466701403040, 340945552945616104095546549396336, 3261527521637774696821080128931389072
Offset: 3

Views

Author

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, D1.

Crossrefs

Programs

  • PARI
    \\ rather inefficient, should use memoization
    b(n) = prod(i=0, n-1, (3*i+1)!/(n+i)! );
    a(n) = b(n) - n! - sum(k=1, n-3, binomial(n,k)^2 * k! *a(n-k) );
    vector(20,n,a(n)) \\ Joerg Arndt, Oct 03 2015

Formula

Let b(n) = Product_{i=0..n-1} (3*i+1)!/(n+i)! be the number of alternating sign n X n matrices (i.e., sequence A005130), and a(n) the number of core alternating sign n X n matrices considered here, with the sequence [1,2,59,...] starting at offset n=3. Then it is not hard to show that for n>3: a(n) = b(n) - n! - Sum_{k=1..n-3} binomial(n,k)^2 * k! *a(n-k). - Christine Bessenrodt, Oct 02 2015
a(n) ~ exp(1/36) * Pi^(1/3) * 2^(5/12 - 2*n^2) * 3^(-7/36 + 3*n^2/2) / (A^(1/3) * Gamma(1/3)^(2/3) * n^(5/36)), where A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Apr 25 2016

Extensions

Corrected and extended by Christine Bessenrodt, Oct 02 2015

A293178 Number of linearly chained pairs of n X n alternating sign matrices.

Original entry on oeis.org

2, 17, 504, 53932
Offset: 1

Views

Author

N. J. A. Sloane, Oct 19 2017

Keywords

Crossrefs

Cf. A005130.

A005160 Number of alternating sign n X n matrices invariant under a quarter turn.

Original entry on oeis.org

1, 0, 1, 2, 3, 0, 12, 40, 100, 0, 1225, 6860, 28812, 0, 1037232, 9779616
Offset: 1

Views

Author

Keywords

Comments

Robbins incorrectly gives a(12) = 6460.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.

Crossrefs

a(4n) gives A059476.

Formula

Robbins gives a simple (conjectured) formula.
Previous Showing 11-20 of 60 results. Next