cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A049086 Number of tilings of 4 X 3n rectangle by 1 X 3 rectangles. Rotations and reflections are considered distinct tilings.

Original entry on oeis.org

1, 3, 13, 57, 249, 1087, 4745, 20713, 90417, 394691, 1722917, 7520929, 32830585, 143313055, 625594449, 2730863665, 11920848033, 52037243619, 227154537661, 991581805481, 4328482658041, 18894822411423, 82480245888473, 360045244866137, 1571680309076689, 6860746056673507
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a[0]:=1:a[1]:=3:a[2]:=13: for n from 3 to 25 do a[n]:=5*a[n-1]-3*a[n-2]+a[n-3] od: seq(a[n],n=0..25); # Emeric Deutsch, Feb 15 2005
    a := n -> hypergeom([(n+1)/2, n/2+1, -n], [1/3, 2/3], -8/27):
    seq(simplify(a(n)), n=0..25); # Peter Luschny, Dec 09 2020
  • Mathematica
    LinearRecurrence[{5,-3,1},{1,3,13},50] (* Vincenzo Librandi, Feb 18 2012 *)
    CoefficientList[Series[(1-x)^2/(1-5x+3x^2-x^3), {x, 0, 40}], x] (* M. Poyraz Torcuk, Nov 06 2021 *)

Formula

a(n) = 5*a(n-1) - 3*a(n-2) + a(n-3).
a(n)/a(n-1) tends to 4.3652300134..., an eigenvalue of the matrix M and an inverse root of the polynomial x^3 - 3x^2 + 5x - 1. [a(n-2), a(n-1), a(n)] = M^n * [1 1 1], where M = the 3 X 3 matrix [ 5 -3 1 / 1 0 0 / 0 1 0]. E.g., a(3), a(4), a(5) = 57, 249, 1087. M^5 * [1 1 1] = [57, 249, 1087] - Gary W. Adamson, Apr 25 2004
G.f.: (1-x)^2/(1-5*x+3*x^2-x^3). - Colin Barker, Feb 03 2012
a(n) = Sum_{k=0..n} A109955(n,k)*2^k. - Philippe Deléham, Feb 18 2012
a(n) = hypergeom([(n+1)/2, n/2+1, -n], [1/3, 2/3], -8/27). - Peter Luschny, Dec 09 2020

Extensions

More terms from Emeric Deutsch, Feb 15 2005

A028471 Number of perfect matchings (or domino tilings) in the graph P_9 X P_2n.

Original entry on oeis.org

1, 55, 6336, 817991, 108435745, 14479521761, 1937528668711, 259423766712000, 34741645659770711, 4652799879944138561, 623139489426439754945, 83456125990631342400791, 11177167872295392172767936, 1496943834332592837945956455, 200483802581126644843760725601
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[?OddQ, ?OddQ] = 0;
    T[m_, n_] := Product[2(2+Cos[2 j Pi/(m+1)]+Cos[2 k Pi/(n+1)]), {k, 1, n/2}, {j, 1, m/2}];
    a[n_] := T[2n, 9] // Round;
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 28 2022 *)
  • PARI
    {a(n) = sqrtint(polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(9, 2, I*x/2)))} \\ Seiichi Manyama, Apr 13 2020

Formula

a(n) = 209*a(n-1) - 11936*a(n-2) + 274208*a(n-3) - 3112032*a(n-4) + 19456019*a(n-5) - 70651107*a(n-6) + 152325888*a(n-7) - 196664896*a(n-8) + 152325888*a(n-9) - 70651107*a(n-10) + 19456019*a(n-11) - 3112032*a(n-12) + 274208*a(n-13) - 11936*a(n-14) + 209*a(n-15) - a(n-16). - Jay Anderson (horndude77(AT)gmail.com), Apr 07 2007
G.f.: (1 - 154x + 6777x^2 - 123961x^3 + 1132714x^4 - 5684515x^5 + 16401668x^6 - 27757938x^7 + 27757938*x^8 - 16401668x^9 + 5684515x^10 - 1132714x^11 + 123961x^12 -6777x^13 + 154x^14 - x^15)/(1 - 209x + 11936x^2 - 274208x^3 + 3112032x^4 - 19456019x^5 + 70651107x^6 - 152325888x^7 + 196664896x^8 - 152325888x^9 + 70651107x^10 -19456019x^11 + 3112032x^12 - 274208x^13 + 11936x^14 - 209x^15 + x^16). - Sergey Perepechko, Nov 23 2012

Extensions

Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar

A033507 Number of matchings in graph P_{4} X P_{n}.

Original entry on oeis.org

1, 5, 71, 823, 10012, 120465, 1453535, 17525619, 211351945, 2548684656, 30734932553, 370635224561, 4469527322891, 53898461609719, 649966808093412, 7838012982224913, 94519361817920403, 1139818186429110279, 13745178487929574337, 165754445655292452448
Offset: 0

Views

Author

Keywords

Examples

			a(1) = 5: the graph is
. o-o-o-o
and the five matchings are
. o o o o
. o-o o o
. o o-o o
. o o o-o
. o-o o-o
		

References

  • H. Hosoya and A. Motoyama, An effective algorithm for obtaining polynomials for dimer statistics. Application of operator technique on the topological index to two- and three-dimensional rectangular and torus lattices, J. Math. Phys., 26(1985), 157-167.

Crossrefs

Column 4 of triangle A210662. Row sums of A100265.
For perfect matchings see A005178.
Bisection (even part) gives A260034.

Programs

  • GAP
    a:=[1,5,71,823,10012,120465, 1453535,17525619,211351945];; for n in [10..30] do a[n]:=9*a[n-1]+41*a[n-2]-41*a[n-3]-111*a[n-4]+91*a[n-5] +29*a[n-6]-23*a[n-7]-a[n-8]+a[n-9]; od; a; # G. C. Greubel, Oct 26 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)*(1 -3*x-18*x^2+2*x^3+12*x^4+x^5-x^6)/(1-9*x-41*x^2+41*x^3+111*x^4-91*x^5 -29*x^6+23*x^7+x^8-x^9) )); // G. C. Greubel, Oct 26 2019
    
  • Maple
    a:=array(0..20,[1, 5, 71, 823, 10012, 120465, 1453535, 17525619, 211351945]):
    for j from 9 to 20 do
      a[j]:=9*a[j-1]+41*a[j-2]-41*a[j-3]-111*a[j-4]+91*a[j-5]+
            29*a[j-6]-23*a[j-7]-a[j-8]+a[j-9]
    od:
    convert(a,list);
    # Sergey Perepechko, Apr 24 2013
  • Mathematica
    LinearRecurrence[{9,41,-41,-111,91,29,-23,-1,1},{1,5,71,823,10012,120465, 1453535,17525619,211351945},30] (* Harvey P. Dale, Mar 27 2015 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x)*(1 -3*x-18*x^2+2*x^3+12*x^4+x^5-x^6)/(1-9*x-41*x^2+41*x^3+111*x^4-91*x^5 -29*x^6+23*x^7+x^8-x^9)) \\ G. C. Greubel, Oct 26 2019
    
  • Sage
    def A033507_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x)*(1 -3*x-18*x^2+2*x^3+12*x^4+x^5-x^6)/(1-9*x-41*x^2+41*x^3+111*x^4-91*x^5 -29*x^6+23*x^7+x^8-x^9) ).list()
    A033507_list(30) # G. C. Greubel, Oct 26 2019
    

Formula

From Sergey Perepechko, Apr 24 2013: (Start)
a(n) = 9*a(n-1) +41*a(n-2) -41*a(n-3) -111*a(n-4) +91*a(n-5) +29*a(n-6) -23*a(n-7) -a(n-8) +a(n-9).
G.f.: (1-x) * (1 -3*x -18*x^2 +2*x^3 +12*x^4 +x^5 -x^6) / (1 -9*x -41*x^2 +41*x^3 +111*x^4 -91*x^5 -29*x^6 +23*x^7 +x^8 -x^9). (End)

Extensions

Edited by N. J. A. Sloane, Nov 15 2009

A188899 Third row of array in A187617.

Original entry on oeis.org

1, 5, 36, 281, 2245, 18061, 145601, 1174500, 9475901, 76455961, 616891945, 4977472781, 40161441636, 324048393905, 2614631600701, 21096536145301, 170220478472105, 1373448758774436, 11081871650713781, 89415697915538545, 721463601671126161, 5821234309893001301, 46969478172465070500, 378980086070257592201, 3057856106268358639861
Offset: 0

Views

Author

N. J. A. Sloane, Apr 13 2011

Keywords

Crossrefs

Bisection (odd part) of A005178. - Alois P. Heinz, Oct 28 2012

Programs

  • Maple
    ft:=(m,n)->
    2^(m*n/2)*mul( mul(
    (cos(Pi*i/(n+1))^2+cos(Pi*j/(m+1))^2), j=1..m/2), i=1..n/2);
    gt:=(m,n)->round(evalf(ft(m,n),300));
    tt:=[seq(gt(4,2*n),n=0..10)];
    # second Maple program:
    a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|11|-25|11>>^n.
            <<1, 5, 36, 281>>)[1, 1]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 28 2012
  • Mathematica
    LinearRecurrence[{11, -25, 11, -1}, {1, 5, 36, 281}, 25] (* Jean-François Alcover, Jun 17 2018 *)
  • PARI
    x='x+O('x^200); Vec((1-x)*(x^2-5*x+1)/(x^4-11*x^3+25*x^2-11*x+1)) \\ Altug Alkan, Mar 23 2016

Formula

G.f.: (1-x)*(x^2-5*x+1)/(x^4-11*x^3+25*x^2-11*x+1). - Alois P. Heinz, Oct 28 2012

A220614 T(n,k)=Number of ways to reciprocally link elements of an nXk array either to themselves or to exactly two horizontal and vertical neighbors, without consecutive collinear links.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 5, 5, 1, 1, 8, 11, 11, 8, 1, 1, 13, 21, 36, 21, 13, 1, 1, 21, 43, 95, 95, 43, 21, 1, 1, 34, 85, 281, 324, 281, 85, 34, 1, 1, 55, 171, 781, 1277, 1277, 781, 171, 55, 1, 1, 89, 341, 2245, 4673, 7041, 4673, 2245, 341, 89, 1, 1, 144, 683, 6336
Offset: 1

Views

Author

R. H. Hardin Dec 17 2012

Keywords

Comments

Table starts
.1...1....1......1.......1.........1..........1............1.............1
.1...2....3......5.......8........13.........21...........34............55
.1...3....5.....11......21........43.........85..........171...........341
.1...5...11.....36......95.......281........781.........2245..........6336
.1...8...21.....95.....324......1277.......4673........17768.........66245
.1..13...43....281....1277......7041......34981.......183920........937663
.1..21...85....781....4673.....34981.....233265......1653229......11354857
.1..34..171...2245...17768....183920....1653229.....16038658.....149429377
.1..55..341...6336...66245....937663...11354857....149429377....1884307184
.1..89..683..18061..249499...4861869...79290645...1423339849...24310532213
.1.144.1365..51205..934816..24977087..548972737..13397669320..309983079825
.1.233.2731.145601.3511945.128971605.3817993565.126938044289.3977585437731

Examples

			Some solutions for n=3 k=4 0=self 2=n 4=w 6=e 8=s (reciprocal directions total 10)
.00.00.68.48...68.48.68.48...68.48.00.00...00.00.00.00...00.68.48.00
.00.00.26.24...26.24.26.24...26.24.00.00...00.00.00.00...00.26.24.00
.00.00.00.00...00.00.00.00...00.00.00.00...00.00.00.00...00.00.00.00
		

Crossrefs

Column 2 is A000045(n+1)
Column 3 is A001045(n+1)
Column 4 is A005178(n+1)
Diagonal is A086832

A100265 Triangle read by rows: T(n,k) is the number of k-matchings in the P_4 X P_n lattice graph.

Original entry on oeis.org

1, 1, 3, 1, 1, 10, 29, 26, 5, 1, 17, 102, 267, 302, 123, 11, 1, 24, 224, 1044, 2593, 3388, 2150, 552, 36, 1, 31, 395, 2696, 10769, 25835, 36771, 29580, 12181, 2111, 95, 1, 38, 615, 5566, 31106, 111882, 261965, 395184, 372109, 206206, 60730, 7852, 281, 1, 45
Offset: 0

Views

Author

Emeric Deutsch, Dec 28 2004

Keywords

Comments

Row sums yield A033507. T(n,2n) yields A005178.

Examples

			T(2,4)=5 because in the graph P_4 X P_2 with vertices a(0,0), b(0,1), c(0,2),
d(0,3),a'(1,0),b'(1,1),c'(1,2),d'(1,3), we have the following 4-matchings
{aa',bb',cc',dd'},{aa',bb',cd,c'd'},{ab,a'b',cc',dd'},{ab,a'b',cd,c'd'} and {aa',bc,b'c',dd'} (perfect matchings, of course).
Triangle starts:
1;
1, 3, 1;
1, 10, 29, 26, 5;
1, 17, 102, 267, 302, 123, 11;
1, 24, 224, 1044, 2593, 3388, 2150, 552, 36;
		

References

  • H. Hosoya and A. Motoyama, An effective algorithm for obtaining polynomials for dimer statistics. Application of operator technique on the topological index to two- and three-dimensional rectangular and torus lattices, J. Math. Physics 26 (1985) 157-167 (eq. (46) and Table VI).

Crossrefs

Programs

  • Maple
    G:= - (1 + 3*z^3*t^4 + 11*z^3*t^5 + 6*z^3*t^6 - 2*z*t - 2*z*t^2 - 3*z^2*t^2 - 9*z^2*t^3 - 3*z^2*t^4 + z^7*t^14 + 3*z^4*t^6 + 5*z^4*t^7 + 2*z^4*t^8 - 3*z^5*t^8 - 3*z^5*t^9 - 5*z^5*t^10 - 2*z^6*t^11)/( - 1 + z + t^18*z^9 + z^3*t^2 + 4*z^3*t^3 - 4*z^3*t^4 - 27*z^3*t^5 - 15*z^3*t^6 + 5*z*t + 3*z*t^2 + 2*z^2*t + 13*z^2*t^2 + 21*z^2*t^3 + 5*z^2*t^4 - 2*z^7*t^11 - 3*z^7*t^12 - 9*z^7*t^13 - 9*z^7*t^14 - 3*z^4*t^4 - 18*z^4*t^5 - 41*z^4*t^6 - 40*z^4*t^7 - 9*z^4*t^8 - z^8*t^14 - z^8*t^16 + z^8*t^15 + 3*z^5*t^6 + 14*z^5*t^7 + 29*z^5*t^8 + 24*z^5*t^9 + 21*z^5*t^10 - z^6*t^8 + 6*z^6*t^10 + 19*z^6*t^11 + 5*z^6*t^12):
    Gser:=simplify(series(G,z=0,11)): P[0]:=1: for n from 1 to 8 do P[n]:=coeff(Gser,z^n) od:for n from 0 to 8 do seq(coeff(t*P[n],t^k),k=1..2*n + 1) od; # yields sequence in triangular form

Formula

G.f.= (1 - zt^2)(z^6*t^12 + z^5*t^10 - 2z^5*t^9 - 4z^4*t^8 - 5z^4*t^7 - 3z^4*t^6 - 2z^3*t^6 + 4z^2*t^4 + 11z^2*t^3 + 3z^2*t^2 + zt^2 + 2zt - 1)/( - 1 + z + t^18*z^9 + z^3*t^2 + 4z^3*t^3 - 4z^3*t^4 - 27z^3*t^5 - 15z^3*t^6 + 5z*t + 3zt^2 + 2tz^2 + 13z^2*t^2 + 21z^2*t^3 + 5z^2*t^4 - 2z^7*t^11 - 3z^7*t^12 - 9z^7*t^13 - 9z^7*t^14 - 3z^4*t^4 - 18z^4*t^5 - 41z^4*t^6 - 40z^4*t^7 - 9z^4*t^8 - z^8*t^14 - z^8*t^16 + z^8*t^15 + 3z^5*t^6 + 14z^5*t^7 + 29z^5*t^8 + 24z^5*t^9 + 21z^5*t^10 - z^6*t^8 + 6z^6*t^10 + 19z^6*t^11 + 5z^6*t^12).
The row generating polynomials A[n] satisfy A[n] = (5t + 1 + 3t^2)A[n - 1] + (13t^2 + 21t^3 + 5t^4 + 2t)A[n - 2] + ( - 27t^5 - 15t^6 + t^2 - 4t^4 + 4t^3)A[n - 3] + ( - 40t^7 - 9t^8 - 41t^6 - 18t^5 - 3t^4)A[n - 4] + (29t^8 + 21t^10 + 3t^6 + 24t^9 + 14t^7)A[n - 5] + (6t^10 + 5t^12 - t^8 + 19t^11)A[n - 6] + ( - 9t^13 - 2t^11 - 3t^12 - 9t^14)A[n - 7] + ( - t^16 - t^14 + t^15)A[n - 8] + t^18*A[n - 9]

A220123 Number of tilings of a 4 X n rectangle using integer-sided rectangular tiles of area 4.

Original entry on oeis.org

1, 1, 2, 3, 9, 16, 35, 65, 143, 281, 590, 1174, 2440, 4925, 10142, 20563, 42178, 85819, 175632, 357875, 731536, 1491966, 3047879, 6218844, 12699982, 25919176, 52922491, 108022099, 220541999, 450186874, 919074255, 1876149465, 3830134125, 7818778884, 15961716918
Offset: 0

Views

Author

Alois P. Heinz, Dec 05 2012

Keywords

Examples

			a(3) = 3, because there are 3 tilings of a 4 X 3 rectangle using integer-sided rectangular tiles of area 4:
._._._.   ._.___.   .___._.
| | | |   | |   |   |   | |
| | | |   | |___|   |___| |
| | | |   | |   |   |   | |
|_|_|_|   |_|___|   |___|_|
		

Crossrefs

Column k=4 of A220122. Cf. A005178.

Programs

  • Maple
    gf:= -(x-1)*(x+1)*(x^2+1)/(x^8-x^6+x^5-5*x^4-x^2-x+1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..50);

Formula

G.f.: -(x-1)*(x+1)*(x^2+1) / (x^8 - x^6 + x^5 - 5*x^4 - x^2 - x + 1).
a(n) = a(n-1) + a(n-2) + 5*a(n-4) - a(n-5) + a(n-6) - a(n-8). - Caleb Wagner, Nov 06 2013
a(2*n+1) = Sum_{k=0..n} A005178(k+1)*a(2*n-2*k). - Shravan Haribalaraman, Aug 29 2022

A362298 Number of tilings of a 4 X n rectangle using dominos and 2 X 2 right triangles.

Original entry on oeis.org

1, 1, 19, 55, 472, 2023, 13249, 66325, 392299, 2088856, 11877025, 64803157, 362823607, 1998759703, 11123273896, 61509329983, 341492705365, 1891193243713, 10489893539203, 58127214942544, 322296397820593, 1786338231961609, 9903234373856059, 54893955008138983
Offset: 0

Views

Author

Gerhard Kirchner, Apr 19 2023

Keywords

Comments

Triangles only occur as pairs forming 2 X 2 squares. For program code and additional details, see A362297.

Examples

			a(2) = 19.
Partitions of a 2 X 2 square (triangles or dominos):
   ___    ___    ___    ___
  |  /|  |\  |  |___|  | | |
  |/__|  |__\|  |___|  |_|_|
       2t            2d
   ___ ___    ___ ___    ___ ___    _ ___ _    _______
  |2t |2t |  |2t |2d |  |2d |2t |  | |2t | |  |only d |
  |___|___|  |___|___|  |___|___|  |_|___|_|  |_______|
    4 ways +   4 ways +  4 ways  +   2 ways +  5 ways  = 19 ways
Only dominos: A005178(3) = 5.
		

Crossrefs

Column k=2 of A362297.

Programs

  • Mathematica
    LinearRecurrence[{4,18,-48,-42,99},{1,1,19,55,472},24] (* Stefano Spezia, Apr 20 2023 *)

Formula

a(n) = 4*a(n-1) + 18*a(n-2) - 48*a(n-3) - 42*a(n-4) + 99*a(n-5).
G.f.: (9*x^3-3*x^2-3*x+1)/(-99*x^5+42*x^4+48*x^3-18*x^2-4*x+1).

A129113 Expansion of x^3 / (1 - x - 5*x^2 - x^3 + x^4).

Original entry on oeis.org

0, 0, 0, 1, 1, 6, 12, 42, 107, 323, 888, 2568, 7224, 20629, 58429, 166230, 471780, 1340730, 3807431, 10816631, 30722736, 87272592, 247895472, 704164537, 2000191753, 5681637318, 16138865148, 45843078954, 130218850259
Offset: 0

Views

Author

Roger L. Bagula, Jun 07 2007

Keywords

Crossrefs

Cf. A005178.

Programs

  • Mathematica
    f[1] = f[2] = f[3] = 0; f[4] = 1; f[n_] := f[n] = f[n - 1] + 5f[n - 2] + f[n - 3] - f[n - 4]; Array[f, 29] (* or *) LinearRecurrence[{1, 5, 1, -1}, {0, 0, 0, 1}, 29] (* or *) gf = x^3/(1 - x - 5 x^2 - x^3 + x^4); CoefficientList[ Series[gf, {x, 0, 28}], x]
  • PARI
    concat(vector(3), Vec(x^3/(1-x-5*x^2-x^3+x^4) + O(x^30))) \\ Michel Marcus, Nov 19 2017

Formula

a(n) = a(n - 1) + 5*a(n - 2) + a(n - 3) - a(n - 4).
a(n) = ((-b + c - e - g + i)*(1 + s + k)^n + (b + d - f + h - j)*(1 - s + l)^n + (b - d + f - h + j)*(1 - s - l)^n + (-b - c + e + g - i)*(1 + s - k)^n)/(5800*4^n), with b = 100*s, c = 1015*k, d = 145*sqrt(10*(7 + s)), e = 245*sqrt(58*(7 + s)), f = 75*sqrt(290*(7 + s)), g = 1914*sqrt(119 + 22*s), h = 98*sqrt(145*(119 + 22*s)), i = 382*sqrt(3451 + 638*s), j = 406*sqrt(595 + 110*s), k = sqrt(2*(7 + s)), l = sqrt(2*(7 - s)), s = sqrt(29). - Tim Monahan, Sep 09 2011; modified by Robert G. Wilson v, Sep 26 2011

A171064 G.f.: -x*(x-1)*(1+x)/(1-x-7*x^2-x^3+x^4).

Original entry on oeis.org

0, 1, 1, 7, 15, 64, 175, 631, 1905, 6433, 20224, 66529, 212625, 692119, 2226799, 7217728, 23284815, 75343591, 243328225, 786800449, 2542156800, 8217744577, 26556314401, 85835882791, 277405671375, 896595420736, 2897714688751
Offset: 0

Views

Author

R. J. Mathar, at the request of R. K. Guy, Sep 03 2010

Keywords

Comments

The member k=7 of a family of sequences starting 0,1,1,k with recurrence a(n) = a(n-1)+k*a(n-2)+a(n-3)-a(n-4).

Crossrefs

Cf. A116201 (k=1), A105309 (k=2), A152090 (k=3), A007598 (k=4), A005178 (k=5), A003757 (k=6).

Programs

  • Magma
    I:=[0, 1, 1, 7]; [n le 4 select I[n] else Self(n-1) + 7*Self(n-2) + Self(n-3) - Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012
  • Mathematica
    CoefficientList[Series[-x*(x - 1)*(1 + x)/(1 - x - 7*x^2 - x^3 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
    LinearRecurrence[{1,7,1,-1},{0,1,1,7},30] (* Harvey P. Dale, Nov 15 2020 *)

Formula

a(n) = +a(n-1) +7*a(n-2) +a(n-3) -a(n-4).
The roots (r1..r4) of the characteristic polynomials for this "family" of sequences have the following form (not simplified) for k= 1,2,3,4,5,6.... r1=(sqrt(4*k+10+2*sqrt(4*k+9))+sqrt(4*k-6+2*sqrt(4*k+9)))/4. r2=(sqrt(4*k+10+2*sqrt(4*k+9))-sqrt(4*k-6+2*sqrt(4*k+9)))/4. r3=(-sqrt(4*k+10-2*sqrt(4*k+9))-sqrt(4*k-6-2*sqrt(4*k+9)))/4. r4=(-sqrt(4*k+10-2*sqrt(4*k+9))+sqrt(4*k-6-2*sqrt(4*k+9)))/4. For k=1,2,3, r3 and r4 are complex . Closed-form (not simplified) is as follows for all k (note:for k1-k3 set r3 and r4 =0 and round a(n) to nearest integer): a(n)=sqrt(4*k+9)/(4*k+9)*(((r1)^n+(r2)^n)-((r3)^n+(r4)^n)). [Tim Monahan, Sep 17 2011]
Previous Showing 11-20 of 26 results. Next