A049086
Number of tilings of 4 X 3n rectangle by 1 X 3 rectangles. Rotations and reflections are considered distinct tilings.
Original entry on oeis.org
1, 3, 13, 57, 249, 1087, 4745, 20713, 90417, 394691, 1722917, 7520929, 32830585, 143313055, 625594449, 2730863665, 11920848033, 52037243619, 227154537661, 991581805481, 4328482658041, 18894822411423, 82480245888473, 360045244866137, 1571680309076689, 6860746056673507
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Mudit Aggarwal and Samrith Ram, Generating functions for straight polyomino tilings of narrow rectangles, arXiv:2206.04437 [math.CO], 2022.
- R. J. Mathar, Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, Table 19.
- R. J. Mathar, Tilings of rectangular regions by rectangular tiles: Counts derived from transfer matrices, arXiv:1406.7788 (2014), eq. (10)
- Index entries for linear recurrences with constant coefficients, signature (5,-3,1).
-
a[0]:=1:a[1]:=3:a[2]:=13: for n from 3 to 25 do a[n]:=5*a[n-1]-3*a[n-2]+a[n-3] od: seq(a[n],n=0..25); # Emeric Deutsch, Feb 15 2005
a := n -> hypergeom([(n+1)/2, n/2+1, -n], [1/3, 2/3], -8/27):
seq(simplify(a(n)), n=0..25); # Peter Luschny, Dec 09 2020
-
LinearRecurrence[{5,-3,1},{1,3,13},50] (* Vincenzo Librandi, Feb 18 2012 *)
CoefficientList[Series[(1-x)^2/(1-5x+3x^2-x^3), {x, 0, 40}], x] (* M. Poyraz Torcuk, Nov 06 2021 *)
A028471
Number of perfect matchings (or domino tilings) in the graph P_9 X P_2n.
Original entry on oeis.org
1, 55, 6336, 817991, 108435745, 14479521761, 1937528668711, 259423766712000, 34741645659770711, 4652799879944138561, 623139489426439754945, 83456125990631342400791, 11177167872295392172767936, 1496943834332592837945956455, 200483802581126644843760725601
Offset: 0
- Sean A. Irvine, Table of n, a(n) for n = 0..150
- J. L. Hock and R. B. McQuistan, A note on the occupational degeneracy for dimers on a saturated two-dimensional lattice space, Discrete Applied Mathematics, 1984, v.8, 101-104.
- Per Hakan Lundow, Computation of matching polynomials and the number of 1-factors in polygraphs, Research report, No 12, 1996, Department of Math., Umea University, Sweden.
- Per Hakan Lundow, Enumeration of matchings in polygraphs, 1998.
- Index entries for linear recurrences with constant coefficients, signature (209, -11936, 274208, -3112032, 19456019, -70651107, 152325888, -196664896, 152325888, -70651107, 19456019, -3112032, 274208, -11936, 209, -1).
-
T[?OddQ, ?OddQ] = 0;
T[m_, n_] := Product[2(2+Cos[2 j Pi/(m+1)]+Cos[2 k Pi/(n+1)]), {k, 1, n/2}, {j, 1, m/2}];
a[n_] := T[2n, 9] // Round;
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 28 2022 *)
-
{a(n) = sqrtint(polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(9, 2, I*x/2)))} \\ Seiichi Manyama, Apr 13 2020
A033507
Number of matchings in graph P_{4} X P_{n}.
Original entry on oeis.org
1, 5, 71, 823, 10012, 120465, 1453535, 17525619, 211351945, 2548684656, 30734932553, 370635224561, 4469527322891, 53898461609719, 649966808093412, 7838012982224913, 94519361817920403, 1139818186429110279, 13745178487929574337, 165754445655292452448
Offset: 0
a(1) = 5: the graph is
. o-o-o-o
and the five matchings are
. o o o o
. o-o o o
. o o-o o
. o o o-o
. o-o o-o
- H. Hosoya and A. Motoyama, An effective algorithm for obtaining polynomials for dimer statistics. Application of operator technique on the topological index to two- and three-dimensional rectangular and torus lattices, J. Math. Phys., 26(1985), 157-167.
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- David Friedhelm Kind, The Gunport Problem: An Evolutionary Approach, De Montfort University (Leicester, UK, 2020).
- Per Hakan Lundow, Computation of matching polynomials and the number of 1-factors in polygraphs, Research report, No 12, 1996, Department of Math., Umea University, Sweden.
- Per Hakan Lundow, Enumeration of matchings in polygraphs, 1998.
- Index entries for linear recurrences with constant coefficients, signature (9,41,-41,-111,91,29,-23,-1,1).
Bisection (even part) gives
A260034.
-
a:=[1,5,71,823,10012,120465, 1453535,17525619,211351945];; for n in [10..30] do a[n]:=9*a[n-1]+41*a[n-2]-41*a[n-3]-111*a[n-4]+91*a[n-5] +29*a[n-6]-23*a[n-7]-a[n-8]+a[n-9]; od; a; # G. C. Greubel, Oct 26 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)*(1 -3*x-18*x^2+2*x^3+12*x^4+x^5-x^6)/(1-9*x-41*x^2+41*x^3+111*x^4-91*x^5 -29*x^6+23*x^7+x^8-x^9) )); // G. C. Greubel, Oct 26 2019
-
a:=array(0..20,[1, 5, 71, 823, 10012, 120465, 1453535, 17525619, 211351945]):
for j from 9 to 20 do
a[j]:=9*a[j-1]+41*a[j-2]-41*a[j-3]-111*a[j-4]+91*a[j-5]+
29*a[j-6]-23*a[j-7]-a[j-8]+a[j-9]
od:
convert(a,list);
# Sergey Perepechko, Apr 24 2013
-
LinearRecurrence[{9,41,-41,-111,91,29,-23,-1,1},{1,5,71,823,10012,120465, 1453535,17525619,211351945},30] (* Harvey P. Dale, Mar 27 2015 *)
-
my(x='x+O('x^30)); Vec((1-x)*(1 -3*x-18*x^2+2*x^3+12*x^4+x^5-x^6)/(1-9*x-41*x^2+41*x^3+111*x^4-91*x^5 -29*x^6+23*x^7+x^8-x^9)) \\ G. C. Greubel, Oct 26 2019
-
def A033507_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-x)*(1 -3*x-18*x^2+2*x^3+12*x^4+x^5-x^6)/(1-9*x-41*x^2+41*x^3+111*x^4-91*x^5 -29*x^6+23*x^7+x^8-x^9) ).list()
A033507_list(30) # G. C. Greubel, Oct 26 2019
Original entry on oeis.org
1, 5, 36, 281, 2245, 18061, 145601, 1174500, 9475901, 76455961, 616891945, 4977472781, 40161441636, 324048393905, 2614631600701, 21096536145301, 170220478472105, 1373448758774436, 11081871650713781, 89415697915538545, 721463601671126161, 5821234309893001301, 46969478172465070500, 378980086070257592201, 3057856106268358639861
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- N. Allegra, Exact solution of the 2d dimer model: Corner free energy, correlation functions and combinatorics, arXiv:1410.4131 [cond-mat.stat-mech], 2014. See Table 1.
- Index entries for linear recurrences with constant coefficients, signature (11,-25,11,-1).
-
ft:=(m,n)->
2^(m*n/2)*mul( mul(
(cos(Pi*i/(n+1))^2+cos(Pi*j/(m+1))^2), j=1..m/2), i=1..n/2);
gt:=(m,n)->round(evalf(ft(m,n),300));
tt:=[seq(gt(4,2*n),n=0..10)];
# second Maple program:
a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|11|-25|11>>^n.
<<1, 5, 36, 281>>)[1, 1]:
seq(a(n), n=0..30); # Alois P. Heinz, Oct 28 2012
-
LinearRecurrence[{11, -25, 11, -1}, {1, 5, 36, 281}, 25] (* Jean-François Alcover, Jun 17 2018 *)
-
x='x+O('x^200); Vec((1-x)*(x^2-5*x+1)/(x^4-11*x^3+25*x^2-11*x+1)) \\ Altug Alkan, Mar 23 2016
A220614
T(n,k)=Number of ways to reciprocally link elements of an nXk array either to themselves or to exactly two horizontal and vertical neighbors, without consecutive collinear links.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 5, 5, 1, 1, 8, 11, 11, 8, 1, 1, 13, 21, 36, 21, 13, 1, 1, 21, 43, 95, 95, 43, 21, 1, 1, 34, 85, 281, 324, 281, 85, 34, 1, 1, 55, 171, 781, 1277, 1277, 781, 171, 55, 1, 1, 89, 341, 2245, 4673, 7041, 4673, 2245, 341, 89, 1, 1, 144, 683, 6336
Offset: 1
Some solutions for n=3 k=4 0=self 2=n 4=w 6=e 8=s (reciprocal directions total 10)
.00.00.68.48...68.48.68.48...68.48.00.00...00.00.00.00...00.68.48.00
.00.00.26.24...26.24.26.24...26.24.00.00...00.00.00.00...00.26.24.00
.00.00.00.00...00.00.00.00...00.00.00.00...00.00.00.00...00.00.00.00
A100265
Triangle read by rows: T(n,k) is the number of k-matchings in the P_4 X P_n lattice graph.
Original entry on oeis.org
1, 1, 3, 1, 1, 10, 29, 26, 5, 1, 17, 102, 267, 302, 123, 11, 1, 24, 224, 1044, 2593, 3388, 2150, 552, 36, 1, 31, 395, 2696, 10769, 25835, 36771, 29580, 12181, 2111, 95, 1, 38, 615, 5566, 31106, 111882, 261965, 395184, 372109, 206206, 60730, 7852, 281, 1, 45
Offset: 0
T(2,4)=5 because in the graph P_4 X P_2 with vertices a(0,0), b(0,1), c(0,2),
d(0,3),a'(1,0),b'(1,1),c'(1,2),d'(1,3), we have the following 4-matchings
{aa',bb',cc',dd'},{aa',bb',cd,c'd'},{ab,a'b',cc',dd'},{ab,a'b',cd,c'd'} and {aa',bc,b'c',dd'} (perfect matchings, of course).
Triangle starts:
1;
1, 3, 1;
1, 10, 29, 26, 5;
1, 17, 102, 267, 302, 123, 11;
1, 24, 224, 1044, 2593, 3388, 2150, 552, 36;
- H. Hosoya and A. Motoyama, An effective algorithm for obtaining polynomials for dimer statistics. Application of operator technique on the topological index to two- and three-dimensional rectangular and torus lattices, J. Math. Physics 26 (1985) 157-167 (eq. (46) and Table VI).
-
G:= - (1 + 3*z^3*t^4 + 11*z^3*t^5 + 6*z^3*t^6 - 2*z*t - 2*z*t^2 - 3*z^2*t^2 - 9*z^2*t^3 - 3*z^2*t^4 + z^7*t^14 + 3*z^4*t^6 + 5*z^4*t^7 + 2*z^4*t^8 - 3*z^5*t^8 - 3*z^5*t^9 - 5*z^5*t^10 - 2*z^6*t^11)/( - 1 + z + t^18*z^9 + z^3*t^2 + 4*z^3*t^3 - 4*z^3*t^4 - 27*z^3*t^5 - 15*z^3*t^6 + 5*z*t + 3*z*t^2 + 2*z^2*t + 13*z^2*t^2 + 21*z^2*t^3 + 5*z^2*t^4 - 2*z^7*t^11 - 3*z^7*t^12 - 9*z^7*t^13 - 9*z^7*t^14 - 3*z^4*t^4 - 18*z^4*t^5 - 41*z^4*t^6 - 40*z^4*t^7 - 9*z^4*t^8 - z^8*t^14 - z^8*t^16 + z^8*t^15 + 3*z^5*t^6 + 14*z^5*t^7 + 29*z^5*t^8 + 24*z^5*t^9 + 21*z^5*t^10 - z^6*t^8 + 6*z^6*t^10 + 19*z^6*t^11 + 5*z^6*t^12):
Gser:=simplify(series(G,z=0,11)): P[0]:=1: for n from 1 to 8 do P[n]:=coeff(Gser,z^n) od:for n from 0 to 8 do seq(coeff(t*P[n],t^k),k=1..2*n + 1) od; # yields sequence in triangular form
A220123
Number of tilings of a 4 X n rectangle using integer-sided rectangular tiles of area 4.
Original entry on oeis.org
1, 1, 2, 3, 9, 16, 35, 65, 143, 281, 590, 1174, 2440, 4925, 10142, 20563, 42178, 85819, 175632, 357875, 731536, 1491966, 3047879, 6218844, 12699982, 25919176, 52922491, 108022099, 220541999, 450186874, 919074255, 1876149465, 3830134125, 7818778884, 15961716918
Offset: 0
a(3) = 3, because there are 3 tilings of a 4 X 3 rectangle using integer-sided rectangular tiles of area 4:
._._._. ._.___. .___._.
| | | | | | | | | |
| | | | | |___| |___| |
| | | | | | | | | |
|_|_|_| |_|___| |___|_|
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Caleb Wagner, Number of tilings of a 4 X n rectangle using integer sided rectangular tiles of area 4, Nov 2013
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,5,-1,1,0,-1).
-
gf:= -(x-1)*(x+1)*(x^2+1)/(x^8-x^6+x^5-5*x^4-x^2-x+1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..50);
A362298
Number of tilings of a 4 X n rectangle using dominos and 2 X 2 right triangles.
Original entry on oeis.org
1, 1, 19, 55, 472, 2023, 13249, 66325, 392299, 2088856, 11877025, 64803157, 362823607, 1998759703, 11123273896, 61509329983, 341492705365, 1891193243713, 10489893539203, 58127214942544, 322296397820593, 1786338231961609, 9903234373856059, 54893955008138983
Offset: 0
a(2) = 19.
Partitions of a 2 X 2 square (triangles or dominos):
___ ___ ___ ___
| /| |\ | |___| | | |
|/__| |__\| |___| |_|_|
2t 2d
___ ___ ___ ___ ___ ___ _ ___ _ _______
|2t |2t | |2t |2d | |2d |2t | | |2t | | |only d |
|___|___| |___|___| |___|___| |_|___|_| |_______|
4 ways + 4 ways + 4 ways + 2 ways + 5 ways = 19 ways
Only dominos: A005178(3) = 5.
-
LinearRecurrence[{4,18,-48,-42,99},{1,1,19,55,472},24] (* Stefano Spezia, Apr 20 2023 *)
A129113
Expansion of x^3 / (1 - x - 5*x^2 - x^3 + x^4).
Original entry on oeis.org
0, 0, 0, 1, 1, 6, 12, 42, 107, 323, 888, 2568, 7224, 20629, 58429, 166230, 471780, 1340730, 3807431, 10816631, 30722736, 87272592, 247895472, 704164537, 2000191753, 5681637318, 16138865148, 45843078954, 130218850259
Offset: 0
-
f[1] = f[2] = f[3] = 0; f[4] = 1; f[n_] := f[n] = f[n - 1] + 5f[n - 2] + f[n - 3] - f[n - 4]; Array[f, 29] (* or *) LinearRecurrence[{1, 5, 1, -1}, {0, 0, 0, 1}, 29] (* or *) gf = x^3/(1 - x - 5 x^2 - x^3 + x^4); CoefficientList[ Series[gf, {x, 0, 28}], x]
-
concat(vector(3), Vec(x^3/(1-x-5*x^2-x^3+x^4) + O(x^30))) \\ Michel Marcus, Nov 19 2017
A171064
G.f.: -x*(x-1)*(1+x)/(1-x-7*x^2-x^3+x^4).
Original entry on oeis.org
0, 1, 1, 7, 15, 64, 175, 631, 1905, 6433, 20224, 66529, 212625, 692119, 2226799, 7217728, 23284815, 75343591, 243328225, 786800449, 2542156800, 8217744577, 26556314401, 85835882791, 277405671375, 896595420736, 2897714688751
Offset: 0
-
I:=[0, 1, 1, 7]; [n le 4 select I[n] else Self(n-1) + 7*Self(n-2) + Self(n-3) - Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012
-
CoefficientList[Series[-x*(x - 1)*(1 + x)/(1 - x - 7*x^2 - x^3 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
LinearRecurrence[{1,7,1,-1},{0,1,1,7},30] (* Harvey P. Dale, Nov 15 2020 *)
Comments