A069945
Let M_k be the k X k matrix M_k(i,j)=1/binomial(i+n,j); then a(n)=1/det(M_(n+1)).
Original entry on oeis.org
1, -6, -360, 252000, 2222640000, -258768639360000, -410299414270986240000, 9061429740221589431500800000, 2835046804394206618956825845760000000, -12733381268715468286016211650968992153600000000
Offset: 1
-
a[n_] := (-1)^Quotient[n, 2]/(Det[HilbertMatrix[n]] n!); Array[a, 10] (* Jean-François Alcover, Jul 06 2019 *)
-
for(n=0,10,print1(1/matdet(matrix(n+1,n+1,i,j,1/binomial(i+n,j))),","))
-
def A069945(n): return (-1)^(n//2)*mul(binomial(i,i//2) for i in (1..2*n-1))
[A069945(i) for i in (1..11)] # Peter Luschny, Sep 18 2012
A101029
Denominator of partial sums of a certain series.
Original entry on oeis.org
1, 10, 70, 420, 4620, 60060, 60060, 408408, 7759752, 38798760, 892371480, 4461857400, 13385572200, 55454513400, 1719089915400, 3438179830800, 24067258815600, 890488576177200, 890488576177200, 36510031623265200, 1569931359800403600, 1569931359800403600, 73786773910618969200
Offset: 1
n=2: HilbertMatrix[n,n]
1 1/2
1/2 1/3
so a(1) = (1/3)*denominator((1 + 1/2 + 1/2 + 1/3) - 1) = (1/3)*denominator(4/3) = 1.
The n X n Hilbert matrix begins:
1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...
1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 ...
1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 ...
1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 ...
1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
-
Denominator[Table[Sum[1/(i + j - 1), {i, n}, {j, n}], {n,2, 27}]-Table[Sum[1/(i + j - 1), {i, n}, {j, n}], {n, 26}]]/3 (* Alexander Adamchuk, Apr 11 2006 *)
-
a(n) = denominator(3*sum(k=1, n, 1/((2*k-1)*k*(2*k+1)))); \\ Michel Marcus, Feb 28 2022
A278840
a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = A000041(i+j).
Original entry on oeis.org
1, 2, 19, 642, 58884, 13569779, 6931351962, 7532494931779, 16299546505518855, 67814300022651169814, 520884812091898994319805, 7206655416715261673779120809, 174009567319884878178189603283634, 7196671016523025599652036668556922867
Offset: 0
-
Flatten[{1, Table[Permanent[Table[PartitionsP[i+j], {i, 1, n}, {j, 1, n}]], {n, 1, 14}]}]
A278841
a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = A000009(i+j).
Original entry on oeis.org
1, 1, 6, 65, 1737, 91359, 8755730, 1465091787, 420070484342, 194857695312573, 142349343815684947, 161388097061567486595, 276760372468557882285737, 707850058213409589011565269, 2654427644322345709705054800083
Offset: 0
-
Flatten[{1, Table[Permanent[Table[PartitionsQ[i+j], {i, 1, n}, {j, 1, n}]], {n, 1, 14}]}]
A061913
Numerators of the determinant of matrix (M(n) - H(n)), where H(n) is the n-th Hilbert matrix and M(n) is an n X n matrix with i,j-th entry i+j-1.
Original entry on oeis.org
1, 0, -9, 32, -337, 319, -347, 1609, -21569, 21911, -82601, 12211, -247249, 50003, -624457, 16297, -42209, 91127, -91159, 488749, -1773467, 1782853, -9429289, 6156767, -548213, 376169, -25705577, 732761, -84793, 343823, -60683401, 36941321, -89392129, 53762297, -1478431
Offset: 0
-
a[n_]:=Numerator[Det[Table[(i+j-1) - 1/(i+j-1),{i,n},{j,n}]]]; Join[{1},Array[a,34]] (* Stefano Spezia, Jan 19 2025 *)
-
a(n) = numerator(matdet(matrix(n, n, i, j, (i+j-1) - 1/(i+j-1)))); \\ Michel Marcus, Jan 19 2025
A061914
Let H_n = n-th Hilbert matrix; sequence gives 1 / ( det(H_n) * denominator(permanent(H_n)) ).
Original entry on oeis.org
1, 1, 1, 27, 567, 1, 1, 1, 7, 9, 5103, 1275989841, 992436543, 48629390607, 169706648853, 40257567, 63, 1, 7, 31, 1, 3969, 25865973, 117649, 117649, 16807, 49, 9, 81, 117369, 59049, 33480783, 930196594089, 4238886345135097131, 169560200598623521407
Offset: 1
-
with(linalg): seq(1/(denom(permanent(hilbert(n)))*det(hilbert(n))), n=1..16);
-
Permanent[m_List] := With[{v = Array[x, Length[m]]}, Coefficient[Times @@ (m.v), Times @@ v]]; f[n_] := Block[{i = Table[1/(i + j - 1), {i, n}, {j, n}]}, 1/(Det[i]Denominator[Permanent[i]])]; Table[ f[n], {n, 1, 18}] (* Robert G. Wilson v, Feb 06 2004 *)
-
permRWN(a)=n=matsize(a)[1]; if(n==1,return(a[1,1])); n1=n-1; sg=1; m=1; nc=0; in=vector(n); x=in; for(i=1,n,x[i]=a[i,n]-sum(j=1,n,a[i,j])/2); p=prod(i=1,n,x[i]); while(m,sg=-sg; j=1; if((nc%2)!=0,j++; while(in[j-1]==0,j++)); in[j]=1-in[j]; nc+=2*in[j]-1; m=nc!=in[n1]; z=2*in[j]-1; for(i=1,n,x[i]+=z*a[i,j]); p+=sg*prod(i=1,n,x[i])); return(2*(2*(n%2)-1)*p)
for(n=1,23,a=mathilbert(n); print1(1/(matdet(a)*denominator(permRWN(a)))", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 10 2007
-
for(n=1, 25, a=mathilbert(n); print1(1 / (matdet(a) * denominator(matpermanent(a)))", ")) \\ Vaclav Kotesovec, Aug 13 2021
a(22) and a(23) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 10 2007
A076823
Array of coefficients of 1/det(M_n)*P(M_n) where P(M_n) is the characteristic polynomial of the n-th n X n Hilbert matrix M_n(i,j)=1/(i+j-1).
Original entry on oeis.org
-1, 1, 1, -16, 12, -1, 381, -3312, 2160, 1, -10496, 1603680, -10137600, 6048000, -1, 307505, -1022881200, 92708406000, -476703360000, 266716800000, 1, -9316560, 750409713900, -1242627237734400, 78981336366912000, -349935855575040000, 186313420339200000, -1
Offset: 1
Triangle begins:
-1, 1;
1, -16, 12;
-1, 381, -3312, -2160;
...
-
f:= proc(n) uses LinearAlgebra; local P,M;
M:= HilbertMatrix(n);
P:= CharacteristicPolynomial(M,t)/Determinant(M);
seq(coeff(P,t,i),i=0..n)
end proc:
seq(f(n),n=1..10); # Robert Israel, May 07 2018
-
row[n_] := Module[{P, M, x}, M = HilbertMatrix[n]; P = CharacteristicPolynomial[M, x]/Det[M]; (-1)^n CoefficientList[P, x]];
Array[row, 10] // Flatten (* Jean-François Alcover, Jun 22 2020 *)
-
vector(n+1,i,(polcoeff(charpoly(mathilbert(n))/matdet(mathilbert(n)),i-1))) \\ for the "n-th row"
A111194
Permanent of the inverse Hilbert matrix.
Original entry on oeis.org
1, 1, 84, 1397520, 5314794912000, 4855173934730716800000, 1090093558153665322315192780800000, 60907190511553979457004412118419080463155200000
Offset: 0
Cf.
A005249 = determinant of inverse Hilbert matrix; and
A092326 = (permanent/determinant) of inverse Hilbert matrix.
-
NB. www.jsoftware.com
H =: % @: >: @: (+/~) @: i. @ x:
perm=: +/ .*
perm@%.@H n
-
Permanent[m_List] := With[{v = Array[x, Length[m]]}, Coefficient[Times @@ (m . v), Times @@ v]]; f[n_] := Block[{i = Inverse[Table[1/(i + j - 1), {i, n}, {j, n}]]}, Permanent[i]]; Table[ f[n], {n, 7}] (* Robert G. Wilson v, Oct 24 2005 *)
A135451
Triangular function from the characteristic polynomials of the inverse Hilbert matrices.
Original entry on oeis.org
1, 1, -1, 12, -16, 1, 2160, -3312, 381, -1, 6048000, -10137600, 1603680, -10496, 1, 266716800000, -476703360000, 92708406000, -1022881200, 307505, -1, 186313420339200000, -349935855575040000, 78981336366912000, -1242627237734400, 750409713900, -9316560, 1
Offset: 0
{1},
{1, -1},
{12, -16, 1},
{2160, -3312, 381, -1},
{6048000, -10137600, 1603680, -10496, 1},
{266716800000, -476703360000, 92708406000, -1022881200, 307505, -1},
{186313420339200000, -349935855575040000, 78981336366912000, -1242627237734400, 750409713900, -9316560, 1}
-
f:= proc(n) uses LinearAlgebra;
local lambda, P,j;
P:= CharacteristicPolynomial(HilbertMatrix(n),lambda)/Determinant(HilbertMatrix(n));
seq(coeff(P,lambda,n-j),j=0..n);
end proc:
seq(f(n),n=0..10); # Robert Israel, Oct 05 2016
-
<< LinearAlgebra`MatrixManipulation`; a = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[Inverse[HilbertMatrix[n]], x], x], {n, 1, 10}]]; Flatten[a]
A174841
Determinant of the symmetric n X n matrix M_n where M_n(j,k) = n^abs(j-k).
Original entry on oeis.org
1, -3, 64, -3375, 331776, -52521875, 12230590464, -3938980639167, 1677721600000000, -913517247483640899, 619173642240000000000, -511324276025564512546607, 505488617542763051300683776
Offset: 1
a(4) = determinant(M_4) = -3375 where M_4 is the matrix
[ 1 4 16 64]
[ 4 1 4 16]
[16 4 1 4]
[64 16 4 1]
- Jerry Glynn and Theodore Gray, The Beginner's Guide to Mathematica Version 4, Cambridge University Press, 2000, p. 76.
-
[ Determinant( SymmetricMatrix( &cat[ [ n^Abs(j-k): k in [1..j] ]: j in [1..n] ] ) ): n in [1..13] ]; // Klaus Brockhaus, Apr 16 2010
-
for n from 1 to 20 do: x:=(1-n^2)^(n-1):print(x):od:
Comments