cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 67 results. Next

A349995 Record gaps between odd squarefree semiprimes (A046388).

Original entry on oeis.org

6, 12, 16, 20, 22, 24, 26, 28, 32, 36, 38, 40, 44, 50, 52, 60, 64, 70, 74, 84, 90, 92, 100, 102, 116, 118, 120, 132, 136, 138, 140, 142, 146, 152, 154, 156, 164, 170, 184, 186, 210
Offset: 1

Views

Author

Hugo Pfoertner, Dec 25 2021

Keywords

Examples

			  n  A350098(n)  A350099(n)  a(n)
  1      15          21        6
  2      21          33       12
  3      95         111       16
  4     267         287       20
  5    2369        2391       22
		

Crossrefs

Records in A341828.
Cf. A350098 lower ends of the record gaps, A350099 upper ends of the record gaps.

Extensions

a(35)-a(41) from Lucas A. Brown, Feb 29 2024

A350100 Numbers k such that the prime gap between the consecutive primes p1 < k^2 < p2 sets a new record.

Original entry on oeis.org

2, 3, 5, 11, 23, 30, 41, 50, 76, 100, 149, 159, 189, 345, 437, 509, 693, 1110, 1165, 5018, 14908, 18906, 19079, 28634, 38682, 80444, 105686, 185179, 265236, 269697, 409049, 558269, 1673629, 2965232, 3528015, 4292936, 34919969, 43957056, 148793437, 187220890, 424171123
Offset: 1

Views

Author

Hugo Pfoertner, Dec 25 2021

Keywords

Comments

a(51) (in b-file) > 1.5*10^11, corresponding to A378904(51) > 723. - Hugo Pfoertner, Jan 04 2025

Examples

			  n  a(n)  p1   a(n)^2   p2   gap=2*A378904(n)
  1   2     3      4      5    2
  2   3     7      9     11    4
  3   5    23     25     29    6
  4  11   113    121    127   14
  5  23   523    529    541   18
  6  30   887    900    907   20
  7  41  1669   1681   1693   24
  8  50  2477   2500   2503   26
		

Crossrefs

A378904 are the corresponding gaps, divided by 2.

Programs

  • Mathematica
    Module[{nn=4242*10^5,pg},pg=Table[{n,NextPrime[n^2]-NextPrime[n^2,-1]},{n,2,nn}];DeleteDuplicates[pg,GreaterEqual[#1[[2]],#2[[2]]]&]][[All,1]] (* Harvey P. Dale, Jan 28 2023 *)
  • PARI
    a350100(limit) = {my(pmax=0); for(k=2,limit, my(kk=k*k, pp=precprime(kk), pn=nextprime(kk), d=pn-pp); if(d>pmax, print1(k,", "); pmax=d))};
    a350100(3000000)
    
  • Python
    from itertools import count, islice
    from sympy import prevprime, nextprime
    def A350100_gen(): # generator of terms
        c = 0
        for k in count(2):
            a = nextprime(m:=k**2)-prevprime(m)
            if a>c:
                yield k
                c = a
    A350100_list = list(islice(A350100_gen(),20)) # Chai Wah Wu, Dec 17 2024

A053303 Length of maximal prime gap p_{k+1} - p_k with starting prime p_k < 10^n.

Original entry on oeis.org

4, 8, 20, 36, 72, 114, 154, 220, 282, 354, 464, 540, 674, 804, 906, 1132
Offset: 1

Views

Author

Enoch Haga, Mar 05 2000

Keywords

Comments

Prime gaps associated with A053302.
a(17) is probably 1220 and a(19) is probably 1296. - Robert G. Wilson v, Mar 16 2004

Examples

			a(1) = 4 from 7 to 11. a(2) = 8 from 89 to 97. a(3) = 20 from 887 to 907.
a(5)=72 because the 5-digit prime 31397 begins a gap of 72.
		

Crossrefs

p_k's are in A053302. Cf. A005250, A002386. Essentially the same as A038460.

Extensions

a(16) from Eric W. Weisstein, Mar 05 2004

A087103 Smallest jumping champion for prime(n).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6, 6, 6, 6, 2, 2, 2, 2, 2, 6, 6, 6, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6
Offset: 2

Views

Author

Reinhard Zumkeller, Aug 10 2003

Keywords

Comments

A number is called a jumping champion for n, if it is the most frequently occurring difference between consecutive primes <= n;
there are occasionally several jumping champions: see A087102; A087104(n) is the greatest jumping champion for prime(n).

Crossrefs

Programs

  • Mathematica
    d=Table[0, {100}]; p=2; Table[q=NextPrime[p]; d[[q-p]]++; p=q; Position[d, Max[d]][[1,1]], {1000}]

A087104 Greatest jumping champion for prime(n).

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 4, 4, 4, 4, 4, 4, 2, 2, 2, 4, 4, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6, 6, 6, 6, 6, 6, 6, 6, 2, 6, 6, 6, 6, 6, 6, 6, 6, 6, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6
Offset: 2

Views

Author

Reinhard Zumkeller, Aug 10 2003

Keywords

Comments

A number is called a jumping champion for n, if it is the most frequently occurring difference between consecutive primes <= n;
there are occasionally several jumping champions: see A087102; A087103(n) is the smallest jumping champion for prime(n);
a(n)<=6 for small n, see Odlyzko et al. for primes>1.7*10^35.

Crossrefs

Programs

  • Mathematica
    d=Table[0, {100}]; p=2; Table[q=NextPrime[p]; d[[q-p]]++; p=q; Position[d, Max[d]][[-1,1]], {1000}]

A100964 Smallest prime number that begins a prime gap of at least 2n.

Original entry on oeis.org

3, 7, 23, 89, 113, 113, 113, 523, 523, 887, 1129, 1327, 1327, 1327, 1327, 1327, 1327, 9551, 15683, 15683, 15683, 15683, 19609, 19609, 19609, 19609, 31397, 31397, 31397, 31397, 31397, 31397, 31397, 31397, 31397, 31397, 155921, 155921, 155921, 155921
Offset: 1

Views

Author

T. D. Noe, Nov 23 2004

Keywords

Examples

			a(5) = a(6) = a(7) = 113 because there is a gap of 14 between 113 and 127.
		

Crossrefs

Programs

  • Mathematica
    k=1; Table[While[Prime[k+1]-Prime[k] < 2n, k++ ]; Prime[k], {n, 48}]
  • PARI
    lista(pmax) = {my(k = 1, prv = 2, m = 2, kprv = 2); forprime(p = 3, pmax, k++; if(p - prv >= m, for(i = 1, (p - prv - m)/2 + 1, print1(prv, ", ")); m = p - prv + 2; kprv = k); prv = p);} \\ Amiram Eldar, Sep 06 2024

Formula

a(n) = prime(A144309(n)). - Michel Marcus, Nov 02 2013

A104138 Smallest prime followed by n or more composites.

Original entry on oeis.org

2, 3, 7, 7, 23, 23, 89, 89, 113, 113, 113, 113, 113, 113, 523, 523, 523, 523, 887, 887, 1129, 1129, 1327, 1327, 1327, 1327, 1327, 1327, 1327, 1327, 1327, 1327, 1327, 1327, 9551, 9551, 15683, 15683, 15683, 15683, 15683, 15683, 15683, 15683, 19609
Offset: 0

Views

Author

Lekraj Beedassy, Mar 07 2005

Keywords

Comments

Except for a(1), records occur at even values of n, and each term appears an even number of times consecutively. (Proof. A maximal run of composites must begin and end at even numbers.) - Jonathan Sondow, May 31 2014

Examples

			a(10)=113 because it is the first prime occurring before primes 199,211,293,317,467,509,... all followed by at least ten successive composites.
		

Crossrefs

Formula

Record prime A002386(n+1) appears A053695(n-1) times, for n>1.
a(n) = A030296(n) - 1, for n > 0. - Jonathan Sondow, May 31 2014

Extensions

a(34) corrected by Charles R Greathouse IV, Aug 09 2011

A107578 Prime index of A000101(n), maximal gap upper end prime index.

Original entry on oeis.org

2, 3, 5, 10, 25, 31, 100, 155, 190, 218, 1184, 1832, 2226, 3386, 14358, 30803, 31546, 40934, 103521, 104072, 149690, 325853, 1094422, 1319946, 2850175, 6957877, 10539433, 10655463, 20684333, 23163299, 64955635, 72507381
Offset: 1

Views

Author

Alex Beveridge, Apr 25 2007

Keywords

Comments

Conjecture: log a(n) ~ n/2. That is, record prime gaps occur about twice as often as records in an i.i.d. random sequence of comparable length (see arXiv:1709.05508 for a heuristic explanation). - Alexei Kourbatov, Jan 18 2019

Examples

			The prime index of a(3) = 5, so prime(a(3)) = prime(5) = 11.
		

Crossrefs

Formula

a(n) = A005669(n)+1. - Jens Kruse Andersen, Oct 19 2010
From John W. Nicholson, Oct 29 2021: (Start)
a(n) = A000720(A000101(n)).
a(n) = A000720(A002386(n)) + 1. (End)

Extensions

Name modified by John W. Nicholson, Nov 19 2013

A182877 Record gaps between Ramanujan primes.

Original entry on oeis.org

9, 12, 26, 46, 66, 86, 90, 100, 114, 120, 126, 174, 190, 212, 280, 386, 396, 410, 480, 598, 726, 916, 964, 1000, 1074, 1090, 1218, 1280, 1378, 1380, 1614, 1728, 1774, 1924, 1998, 2378, 2452, 2514, 2608, 2852, 2866, 2870, 3080
Offset: 1

Views

Author

T. D. Noe, Dec 09 2010

Keywords

Comments

The Ramanujan prime beginning the gap is in A182876.

Crossrefs

Cf. A005250 (increasing gaps between primes).

Extensions

a(37)-a(43) from Dana Jacobsen, Apr 29 2015

A239673 Record values in A239656 (the first differences of sphenic numbers).

Original entry on oeis.org

12, 24, 27, 28, 33, 35, 43, 44, 46, 48, 50, 52, 60, 65, 70, 72, 79, 82, 92, 98
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 23 2014

Keywords

Crossrefs

Programs

  • Haskell
    a239673 n = a239673_list !! (n-1)
    (a239673_list, a239674_list) = unzip $ (12, 1) : f 1 12 a239656_list where
       f i v (q:qs) | q > v = (q, i) : f (i + 1) q qs
                    | otherwise = f (i + 1) v qs
    -- Reinhard Zumkeller, Mar 23 2014
    
  • PARI
    lista(kmax) = {my(k1 = 30, d, dm = 0); forcomposite(k2 = k1 + 1, kmax, if(factor(k2)[,2] == [1,1,1]~, d = k2 - k1; if(d > dm, dm = d; print1(d, ", ")); k1 = k2));} \\ Amiram Eldar, May 19 2024

Formula

a(n) = A239656(A239674(n)).

Extensions

a(12)-a(20) from Amiram Eldar, May 19 2024
Previous Showing 21-30 of 67 results. Next