cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 86 results. Next

A138378 Number of embedded coalitions in an n-person game.

Original entry on oeis.org

1, 3, 10, 37, 151, 674, 3263, 17007, 94828, 562595, 3535027, 23430840, 163254885, 1192059223, 9097183602, 72384727657, 599211936355, 5150665398898, 45891416030315, 423145657921379, 4031845922290572, 39645290116637023, 401806863439720943, 4192631462935194064
Offset: 1

Views

Author

David Yeung (wkyeung(AT)hkbu.edu.hk), May 08 2008

Keywords

Comments

Same as A005493, apart from offset. - R. J. Mathar, Sep 23 2011
The strategic behavior of players depends crucially on the coalition structures of a game.

Examples

			a(1) = combination(1,0) = 1,
a(2) = combination(2,1) + combination(2,0)= 3,
a(3) = combination(3,2)* a(1) + combination(3,2) + combination(3,1) + combination(3,0)= 10,
a(4) = combination(4,3)* {a(1) + a(2)} + combination(4,2)* a(1) + combination7(4,3)combination(4,2) + combination(4,1) + combination(4,0)= 37,
a(5) = combination(5,4)* {a(1) + a(2) + a(3)} combination(5,3)* {a(1) + a(2)} + combination(5,2)* a(1) + combination(5,4) + combination(5,3) + combination(5,2) + combination(5,1) + combination(5,0)= 151.
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Springer-Verlag, New York, 1995.

Crossrefs

Column k=1 of A283424.

Programs

  • Magma
    [&+[k*StirlingSecond(n, k): k in [1..n]]: n in [1..25]]; // Vincenzo Librandi, May 18 2019
  • Maple
    b:= proc(n, m) option remember;
         `if`(n=0, m, m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=1..24);  # Alois P. Heinz, Dec 10 2024
  • Mathematica
    a[n_] := Sum[Binomial[n, j] BellB[j], {j, 0, n-1}];
    Array[a, 24] (* Jean-François Alcover, Aug 19 2018 *)

Formula

a(1) = combination(1,0) = 1, a(2) = combination(2,1) + combination(2,0)= 3, a(n) = {SUM(i=2 to n-1) combination(n,i)} * {SUM(j=1 to i-1) a(n)} + SUM(i=0 to n-1) combination(n,i), for n > 2.
G.f.: 1/U(0) where U(k)= 1 - x*(k+3) - x^2*(k+1)/U(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 11 2012
G.f.: 1/(U(0)-x) where U(k)= 1 - x - x*(k+1)/(1 - x/U(k+1)); (continued fraction). - Sergei N. Gladkovskii, Oct 12 2012
G.f.: -G(0)/x^2 where G(k) = 1 - 1/(1-k*x)/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Feb 08 2013
G.f.: Q(0)/x^2 -1/x^2, where Q(k) = 1 - x^2*(k+1)/( x^2*(k+1) - (1-x*(k+1))*(1-x*(k+2))/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 10 2013
a(n) = Bell(n+1)-Bell(n) = Sum_{k=1..n} k*Stirling2(n,k). - Alois P. Heinz, May 11 2017
E.g.f.: (exp(x) - 1) * exp(exp(x) - 1). - Ilya Gutkovskiy, Jan 26 2020

A132963 Total number of distinct block sizes in all partitions of [n].

Original entry on oeis.org

1, 2, 8, 25, 102, 439, 2067, 10406, 56754, 328257, 2015818, 13067366, 89192170, 638321285, 4779442602, 37332643831, 303635437532, 2565592977205, 22483754207839, 204013083946460, 1913880812797792, 18536832515581167, 185130415180288134, 1904280138346826637
Offset: 1

Views

Author

Vladeta Jovovic, Sep 06 2007

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, c) option remember; `if`(n=0, c,
          `if`(i<1, 0, add(b(n-j*i, i-1, c+signum(j))*
          combinat[multinomial](n, n-i*j, i$j)/j!, j=0..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=1..30);  # Alois P. Heinz, Jan 06 2022
  • Mathematica
    Rest[ Range[0, 23]! CoefficientList[ Series[ Exp[ Exp[x] - 1] Sum[1 - Exp[ -x^k/k! ], {k, 30}], {x, 0, 23}], x]] (* Robert G. Wilson v, Sep 13 2007 *)

Formula

E.g.f.: exp(exp(x)-1)*Sum_{k>0} (1-exp(-x^k/k!)).

Extensions

More terms from Robert G. Wilson v, Sep 13 2007

A137650 Triangle read by rows, A008277 * A000012.

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 15, 14, 7, 1, 52, 51, 36, 11, 1, 203, 202, 171, 81, 16, 1, 877, 876, 813, 512, 162, 22, 1, 4140, 4139, 4012, 3046, 1345, 295, 29, 1, 21147, 21146, 20891, 17866, 10096, 3145, 499, 37, 1, 115975, 115974, 115463
Offset: 1

Views

Author

Gary W. Adamson, Feb 01 2008

Keywords

Comments

Left column = Bell numbers (A000110) starting (1, 2, 5, 15, 52, 203, ...). Row sums = A005493(n+1): (1, 3, 10, 37, 151, 674, ...).
Corresponding to the generalized Stirling number triangle of first kind A049444. - Peter Luschny, Sep 18 2011

Examples

			First few rows of the triangle are
    1;
    2,   1;
    5,   4,   1;
   15,  14,   7,   1;
   52,  51,  36,  11,   1;
  203, 202, 171,  81,  16,   1;
  877, 876, 813, 512, 162,  22,   1;
  ...
		

Crossrefs

A similar triangle is A133611.

Programs

  • Maple
    A137650_row := proc(n) local k,i;
    add(add(combinat[stirling2](n, n-i), i=0..k)*x^(n-k-1),k=0..n-1);
    seq(coeff(%,x,k),k=0..n-1) end:
    seq(print(A137650_row(n)),n=1..7); # Peter Luschny, Sep 18 2011
  • Mathematica
    row[n_] := Table[StirlingS2[n, k], {k, 0, n}] // Reverse // Accumulate // Reverse // Rest;
    Array[row, 10] // Flatten (* Jean-François Alcover, Dec 07 2019 *)

Formula

A008277 * A000012 as infinite lower triangular matrices. Partial sums of A008277 rows starting from the right.

A196834 Row sums of Sheffer triangle A193685 (5-restricted Stirling2 numbers).

Original entry on oeis.org

1, 6, 37, 235, 1540, 10427, 73013, 529032, 3967195, 30785747, 247126450, 2050937445, 17585497797, 155666739742, 1421428484337, 13377704321695, 129659127547372, 1293095848212799, 13259069937250169, 139671750579429512, 1510382932875294447, 16754464511605466311
Offset: 0

Views

Author

Wolfdieter Lang, Oct 07 2011

Keywords

Examples

			a(2) = 25 + 11 + 1 = 37.
		

Crossrefs

Cf. A000110, A005493, A005494, A045379, A196835 (alternating row sums).

Programs

  • Maple
    b:= proc(n, m) option remember;
         `if`(n=0, 1, m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 5):
    seq(a(n), n=0..23);  # Alois P. Heinz, Aug 22 2021
  • Mathematica
    nmax = 20; CoefficientList[Series[E^(E^x + 5*x - 1), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 10 2020 *)

Formula

a(n) = Sum_{m=0..n} A193685(n,m).
E.g.f.: exp(exp(x)+5*x-1).
a(n) ~ exp(n/LambertW(n) - n - 1) * n^(n + 5) / LambertW(n)^(n + 11/2). - Vaclav Kotesovec, Jun 10 2020
a(0) = 1; a(n) = 5 * a(n-1) + Sum_{k=0..n-1} binomial(n-1,k) * a(k). - Ilya Gutkovskiy, Jul 03 2020

A190823 Number of permutations of 2 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 2.

Original entry on oeis.org

1, 0, 0, 1, 10, 99, 1146, 15422, 237135, 4106680, 79154927, 1681383864, 39034539488, 983466451011, 26728184505750, 779476074425297, 24281301468714902, 804688068731837874, 28269541494090294129, 1049450257149017422000, 41050171013933837206545
Offset: 0

Views

Author

R. H. Hardin, May 21 2011

Keywords

Comments

From Gus Wiseman, Feb 27 2019: (Start)
Also the number of 2-uniform set partitions of {1..2n} such that no block has its two vertices differing by less than 3. For example, the a(4) = 10 set partitions are:
{{1,4}, {2,6}, {3,7}, {5,8}}
{{1,4}, {2,7}, {3,6}, {5,8}}
{{1,5}, {2,6}, {3,7}, {4,8}}
{{1,5}, {2,6}, {3,8}, {4,7}}
{{1,5}, {2,7}, {3,6}, {4,8}}
{{1,5}, {2,8}, {3,6}, {4,7}}
{{1,6}, {2,5}, {3,7}, {4,8}}
{{1,6}, {2,5}, {3,8}, {4,7}}
{{1,7}, {2,5}, {3,6}, {4,8}}
{{1,8}, {2,5}, {3,6}, {4,7}}
(End)

Examples

			All solutions for n=4 (read downwards):
  1    1    1    1    1    1    1    1    1    1
  2    2    2    2    2    2    2    2    2    2
  3    3    3    3    3    3    3    3    3    3
  4    4    4    4    1    4    4    1    4    4
  1    1    2    1    4    2    1    4    2    2
  3    3    1    2    2    3    2    3    1    3
  2    4    4    4    3    4    3    2    3    1
  4    2    3    3    4    1    4    4    4    4
		

Crossrefs

Distance of 1 instead of 2 gives |A000806|.
Column k=3 of A293157.
Cf. A000699, A001147 (2-uniform set partitions), A003436, A005493, A011968, A170941, A278990 (distance 2+ version), A306386 (cyclical version).

Programs

  • Magma
    I:=[1,0,0,1,10,99]; [n le 5 select I[n] else 2*n*Self(n-1) -2*(3*n-8)*Self(n-2) +2*(3*n-11)*Self(n-3) -2*(n-5)*Self(n-4) -Self(n-5): n in [1..40]]; // G. C. Greubel, Dec 03 2023
    
  • Mathematica
    a[0]=1; a[1]=0; a[2]=0; a[3]=1; a[4]=10; a[5]=99; a[n_] := a[n] = (2*n+2) a[n-1] - (6*n-10) a[n-2] + (6*n-16) a[n-3] - (2*n-8) a[n-4] - a[n-5]; Array[a, 20, 0] (* based on Sullivan's formula, Giovanni Resta, Mar 20 2017 *)
    dtui[{}]:={{}};dtui[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@dtui[Complement[set,s]]]/@Table[{i,j},{j,Select[set,#>i+2&]}];
    Table[Length[dtui[Range[n]]],{n,0,12,2}] (* Gus Wiseman, Feb 27 2019 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A190823
        if (n<6): return (1,0,0,1,10,99)[n]
        else: return 2*(n+1)*a(n-1) - 2*(3*n-5)*a(n-2) + 2*(3*n-8)*a(n-3) - 2*(n-4)*a(n-4) - a(n-5)
    [a(n) for n in range(41)] # G. C. Greubel, Dec 03 2023

Formula

a(n) = 2*(n+1)*a(n-1) - 2*(3*n-5)*a(n-2) + 2*(3*n-8)*a(n-3) - 2*(n-4)*a(n-4) - a(n-5) (proved). - Everett Sullivan, Mar 16 2017
a(n) ~ 2^(n+1/2) * n^n / exp(n+2), based on Sullivan's formula. - Vaclav Kotesovec, Mar 21 2017

Extensions

a(16)-a(20) (using Everett Sullivan's formula) from Giovanni Resta, Mar 20 2017
a(0)=1 prepended by Alois P. Heinz, Oct 17 2017

A362924 Triangle read by rows: T(n,m), n >= 1, 1 <= m <= n, is number of partitions of the set {1,2,...,n} that have at most one block contained in {1,...,m}.

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 15, 13, 8, 1, 52, 47, 35, 16, 1, 203, 188, 153, 97, 32, 1, 877, 825, 706, 515, 275, 64, 1, 4140, 3937, 3479, 2744, 1785, 793, 128, 1, 21147, 20270, 18313, 15177, 11002, 6347, 2315, 256, 1, 115975, 111835, 102678, 88033, 68303, 45368, 23073, 6817, 512, 1, 678570, 657423, 610989, 536882, 436297, 316305, 191866, 85475, 20195, 1024, 1
Offset: 1

Views

Author

N. J. A. Sloane, Aug 10 2023, based on an email from Don Knuth

Keywords

Comments

Also, the maximum number of solutions to an exact cover problem with n items, of which m are secondary.

Examples

			Triangle begins:
  [1],
  [2, 1],
  [5, 4, 1],
  [15, 13, 8, 1],
  [52, 47, 35, 16, 1],
  [203, 188, 153, 97, 32, 1],
  [877, 825, 706, 515, 275, 64, 1],
  [4140, 3937, 3479, 2744, 1785, 793, 128, 1],
  [21147, 20270, 18313, 15177, 11002, 6347, 2315, 256, 1],
  [115975, 111835, 102678, 88033, 68303, 45368, 23073, 6817, 512, 1],
  [678570, 657423, 610989, 536882, 436297, 316305, 191866, 85475, 20195, 1024, 1],
...
For example, if n=4, m=3, then T(4,3) = 8, because out of the A000110(4) = 15 set partitions of {1,2,3,4}, those that have 2 or more blocks contained in {1,2,3} are
  {12,3,4},
  {13,2,4},
  {14,2,3},
  {23,1,4},
  {24,1,3},
  {34,1,2},
  {1,2,3,4},
  while
  {1234},
  {123,4},
  {124,3}
  {134,2}
  {234,1},
  {12,34}
  {13. 24}.
  {14, 23}
  do not.
		

References

  • D. E. Knuth, The Art of Computer Programming, Volume 4B, exercise 7.2.2.1--185, answer on page 468.

Crossrefs

See A113547 and A362925 for other versions of this triangle.
Row sums give A005493.

Programs

  • Maple
    with(combinat);
    T:=proc(n,m) local k;
    add(stirling2(n-m,k)*(k+1)^m, k=0..n-m);
    end;
  • Mathematica
    A362924[n_,m_]:=Sum[StirlingS2[n-m,k](k+1)^m,{k,0,n-m}];
    Table[A362924[n,m],{n,15},{m,n}] (* Paolo Xausa, Dec 02 2023 *)

Formula

T(n, 1) = Bell number (all set partitions) A000110(n);
T(n, n) = 1 when m=n (the only possibility is a single block);
T(n, n-1) = 2^{n-1} when m=n-1 (a single block or two blocks);
T(n, 2) = A078468(2).
In general, T(n, m) = Sum_{k=0..n-m} Stirling_2(n-m,k)*(k+1)^m.

A011966 Third differences of Bell numbers.

Original entry on oeis.org

1, 5, 20, 87, 409, 2066, 11155, 64077, 389946, 2504665, 16923381, 119928232, 888980293, 6876320041, 55382419676, 463539664643, 4024626253845, 36189297168874, 336513491259647, 3231446022478129, 32004743929977258, 326548129128737469, 3428663026172389201
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n+4 with at least one singleton and with the smallest element in a singleton equal to 4. Alternatively, number of partitions of n+4 with at least one singleton and with the largest element in a singleton equal to n+1. - Olivier GERARD, Oct 29 2007

References

  • Olivier Gérard and Karol A. Penson, A budget of set partition statistics, in preparation, unpublished as of Sep 22 2011.

Crossrefs

Programs

  • Maple
    a:= n-> add((-1)^(k+1)*binomial(3,k)*combinat['bell'](n+k), k=0..3):
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 05 2008
  • Mathematica
    Differences[BellB[Range[0,30]],3]  (* Harvey P. Dale, Apr 21 2011 *)
  • Python
    # requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
    from itertools import accumulate
    A011966_list, blist, b = [1], [2, 3, 5], 5
    for _ in range(1000):
        blist = list(accumulate([b]+blist))
        b = blist[-1]
        A011966_list.append(blist[-4]) # Chai Wah Wu, Sep 20 2014

Formula

G.f.: -(1-x+x^2)/x^2 + (1-x)^3/x^2/(G(0)-x) where G(k) = 1 - x*(k+1)/(1 - x/G(k+1) ); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 26 2013
From Vaclav Kotesovec, Jul 28 2021: (Start)
a(n) = Bell(n+3) - 3*Bell(n+2) + 3*Bell(n+1) - Bell(n).
a(n) ~ n^3 * Bell(n) / LambertW(n)^3 * (1 - 3*LambertW(n)/n). (End)

A059099 Expansion of exp(exp(x)-1)/(2-exp(x)).

Original entry on oeis.org

1, 2, 7, 33, 198, 1453, 12669, 128320, 1482721, 19260421, 277913552, 4410640919, 76360030701, 1432144732762, 28926138244883, 625974400305541, 14449445989893990, 354384475357492593, 9202837263156670345, 252260867710562944224, 7278710072406887897461
Offset: 0

Views

Author

Vladeta Jovovic, Jan 02 2001

Keywords

Comments

Row sums of A227343. - Peter Bala, Jul 11 2013
The sequence gives the number of barred preferential arrangements of an n-set having one bar, where one fixed section is a free section and elements which are to go into the other section are partitioned into unordered nonempty subsets. - Sithembele Nkonkobe, Jul 02 2015

Examples

			exp(exp(x)-1)/(2-exp(x)) = 1 + 2*x + 7/2*x^2 + 11/2*x^3 + 33/4*x^4 + 1453/120*x^5 + 4223/240*x^6 + 1604/63*x^7 + ...
		

Crossrefs

Programs

  • Maple
    s := series(exp(exp(x)-1)/(2-exp(x)), x, 60): for i from 0 to 50 do printf(`%d,`,i!*coeff(s,x,i)) od:
  • Mathematica
    CoefficientList[Series[E^(E^x-1)/(2-E^x), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jul 02 2015 *)

Formula

a(n) = Sum_{m=0..n} Sum_{i=0..n} Stirling2(n, i)*Product_{j=1..m} (i-j+1).
Stirling transform of A000522. - Vladeta Jovovic, May 10 2004
a(n) ~ n!*exp(1)/(2*(log(2))^(n+1)). - Vaclav Kotesovec, Jul 02 2015

Extensions

More terms from James Sellers, Jan 03 2001

A102286 Total number of odd blocks in all partitions of n-set.

Original entry on oeis.org

1, 2, 7, 24, 96, 418, 1989, 10216, 56275, 330424, 2057672, 13532060, 93633021, 679473694, 5156626991, 40824399712, 336406367196, 2879570703510, 25557841113625, 234822774979908, 2230107923204443, 21861817965483016, 220940261740238140, 2299258336094622008
Offset: 1

Views

Author

Vladeta Jovovic, Feb 19 2005

Keywords

Comments

a(n) is also the number of set partitions of {1,2,...,n+1} in which the element 1 is in an even size block. - Geoffrey Critzer, Apr 02 2013

Examples

			a(3)=7 because we have (123), (1)/23, 12/(3), 13/(2), (1)/(2)/(3); the odd blocks are shown between parentheses.
		

Crossrefs

Programs

  • Maple
    G:=sinh(x)*exp(exp(x)-1): Gser:=series(G,x=0,30): seq(n!*coeff(Gser,x^n),n=1..25); # Emeric Deutsch
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n],
           add((p->(p+[0, `if`(i::odd, j, 0)*p[1]]))(
           b(n-i*j, i-1))*multinomial(n, n-i*j, i$j)/j!, j=0..n/i))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=1..30);  # Alois P. Heinz, Sep 16 2015
  • Mathematica
    Range[0, nn]! CoefficientList[
      D[Series[Exp[ (Cosh[x] - 1) + y Sinh[x]], {x, 0, nn}], y] /. y -> 1, x] (* Geoffrey Critzer, Aug 28 2012 *)
    With[{nn=30},CoefficientList[Series[Sinh[x]Exp[Exp[x]-1],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 03 2021 *)

Formula

E.g.f: sinh(x)*exp(exp(x)-1).
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n,2*k+1) * Bell(n-2*k-1). - Ilya Gutkovskiy, Apr 10 2022

Extensions

More terms from Emeric Deutsch, Mar 04 2005

A123158 Square array related to Bell numbers read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 15, 15, 10, 5, 1, 52, 52, 37, 22, 6, 1, 203, 203, 151, 99, 31, 9, 1, 877, 877, 674, 471, 160, 61, 10, 1, 4140, 4140, 3263, 2386, 856, 385, 75, 14, 1, 21147, 21147, 17007, 12867, 4802, 2416, 520, 135, 15, 1
Offset: 0

Views

Author

Philippe Deléham, Oct 01 2006

Keywords

Examples

			Square array, A(n, k), begins:
   1,   1,   1,    1,    1, ... (Row n=0: A000012);
   1,   2,   3,    5,    6, ... (Row n=1: A117142);
   2,   5,  10,   22,   31, ...;
   5,  15,  37,   99,  160, ...;
  15,  52, 151,  471,  856, ...;
  52, 203, 674, 2386, 4802, ...;
Antidiagonals, T(n, k), begin as:
    1;
    1,   1;
    2,   2,   1;
    5,   5,   3,   1;
   15,  15,  10,   5,   1;
   52,  52,  37,  22,   6,  1;
  203, 203, 151,  99,  31,  9,   1;
  877, 877, 674, 471, 160, 61,  10,  1;
		

Crossrefs

Columns include: A000110 (Bell numbers), A003128, A005493, A033452.
Rows include: A000012, A117142.

Programs

  • Magma
    function A(n,k)
      if k lt 0 or n lt 0 then return 0;
      elif n eq 0 then return 1;
      elif (k mod 2) eq 1 then return A(n,k-1) + (1/2)*(k+1)*A(n-1,k+1);
      else return A(n,k-1) + A(n-1,k+1);
      end if;
    end function;
    T:= func< n,k | A(n-k,k) >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 18 2023
    
  • Mathematica
    A[0, _?NonNegative] = 1;
    A[n_, k_]:= A[n, k]= If[n<0 || k<0, 0, If[OddQ[k], A[n, k-1] + (1/2)(k+1) A[n-1, k+1], A[n, k-1] + A[n-1, k+1]]];
    Table[A[n-k, k], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, Feb 21 2020 *)
  • SageMath
    @CachedFunction
    def A(n,k):
        if (k<0 or n<0): return 0
        elif (n==0): return 1
        elif (k%2==1): return A(n,k-1) +(1/2)*(k+1)*A(n-1,k+1)
        else: return A(n,k-1) +A(n-1,k+1)
    def T(n,k): return A(n-k,k)
    flatten([[T(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Jul 18 2023

Formula

A(n, k) = 0 if n < 0, A(0, k) = 1 for k >= 0, A(n, k) = A(n, k-1) + (1/2)*(k+1)*A(n-1, k+1) if k is an odd number, A(n, k) = A(n, k-1) + A(n-1, k+1) if k is an even number (array).
A(n, 0) = A000110(n).
A(n, 1) = A000110(n+1).
A(n, 2) = A005493(n).
A(n, 3) = A033452(n).
A(n, 4) = A003128(n+2).
T(n, k) = A(n-k, k) (antidiagonals).
Previous Showing 31-40 of 86 results. Next