cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 40 results.

A213561 Rectangular array: (row n) = b**c, where b(h) = h^2, c(h) = m*(m+1)/2, m=n-1+h, n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 7, 3, 27, 18, 6, 77, 61, 34, 10, 182, 157, 109, 55, 15, 378, 342, 267, 171, 81, 21, 714, 665, 557, 407, 247, 112, 28, 1254, 1190, 1043, 827, 577, 337, 148, 36, 2079, 1998, 1806, 1512, 1152, 777, 441, 189, 45, 3289, 3189, 2946, 2562, 2072, 1532
Offset: 1

Views

Author

Clark Kimberling, Jun 18 2012

Keywords

Comments

Principal diagonal: A213562
Antidiagonal sums: A213563
Row 1, (1,4,9,...)**(1,3,6,...): A005585
Row 2, (1,4,9,...)**(3,6,10,...): (2*k^5 +25*k^4 + 120*k^3 + 155*k^2 + 58*k)/120
Row 3, (1,4,9,...)**(6,10,15,...): (2*k^5 +35*k^4 + 60*k^3 + 325*k^2 + 118*k)/120
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1....7.....27....77....182
3....18....61....157...342
6....34....109...267...557
10...55....171...407...827
15...81....247...577...1152
21...112...337...777...1532
		

Crossrefs

Cf. A213500.

Programs

  • Mathematica
    b[n_] := n^2; c[n_] := n (n + 1)/2
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213561 *)
    d = Table[t[n, n], {n, 1, 40}] (* A213562 *)
    s1 = Table[s[n], {n, 1, 50}] (* A213563 *)

Formula

T(n,k) = 6*T(n,k-1) - 15*T(n,k-2) + 20*T(n,k-3) - 15*T(n,k-4) + 6*T(n,k-5) - T(n,k-6).
G.f. for row n: f(x)/g(x), where f(x) = n*(n + 1) - (n^2 - n - 2)*x - (n^2 + n - 2)*x^2 + n*(n - 1)*x^3 and g(x) = 2*(1 - x)^6.

A067056 a(n) = (1)*(2 + 3 + 4 + ... + n) + (1 + 2)*(3 + 4 + 5 + ... + n) + (1 + 2 + 3)*(4 + 5 + 6 + ... + n) + ... + (1 + 2 + 3 + ... + n-1)*n.

Original entry on oeis.org

1, 2, 14, 54, 154, 364, 756, 1428, 2508, 4158, 6578, 10010, 14742, 21112, 29512, 40392, 54264, 71706, 93366, 119966, 152306, 191268, 237820, 293020, 358020, 434070, 522522, 624834, 742574, 877424, 1031184, 1205776, 1403248, 1625778, 1875678, 2155398, 2467530
Offset: 1

Views

Author

Amarnath Murthy, Jan 02 2002

Keywords

Examples

			a(4) = (1)*(2+3+4) + (1+2)*(3+4) + (1+2+3)*(4) = 9 + 21 + 24 = 54.
		

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Total[Total[#[[1]]Total[#[[2]]]]&/@Table[TakeDrop[ Range[ k],n],{n,k-1}]],{k,2,40}]] (* Requires Mathematica version 10 or later *)  (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{1,2,14,54,154,364,756},40] (* Harvey P. Dale, Jul 17 2020 *)
  • PARI
    t(n) = n*(n+1)/2;
    a(n) = if (n=1, 1, sum(k=1, n-1, t(k)*(t(n) - t(k)))); \\ Michel Marcus, Mar 06 2018
    
  • PARI
    Vec(x*(1 - 4*x + 17*x^2 - 20*x^3 + 15*x^4 - 6*x^5 + x^6) / (1 - x)^6 + O(x^60)) \\ Colin Barker, Mar 06 2018

Formula

a(n) = Sum_{r=1..n-1} t(r)*(t(n) - t(r)), where t(r) is the r-th triangular number, n>1.
a(n) = n*(2*n^4 + 5*n^3 - 5*n - 2)/60 = (n-1)*n*(n+1)*(n+2)*(2*n+1)/60, n>1. - Ralf Stephan, Apr 30 2004
a(n) = 2*A005585(n-1), n>1. - R. J. Mathar, May 20 2013
a(n) = Sum_{i=1..n} A000217(i)*A001105(n-i) for n>1, a(1)=1. - Bruno Berselli, Mar 06 2018
From Colin Barker, Mar 06 2018: (Start)
G.f.: x*(1 - 4*x + 17*x^2 - 20*x^3 + 15*x^4 - 6*x^5 + x^6) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>7.
(End)

Extensions

More terms from Jason Earls, Jan 11 2002

A207543 Triangle read by rows, expansion of (1+y*x)/(1-2*y*x+y*(y-1)*x^2).

Original entry on oeis.org

1, 0, 3, 0, 1, 5, 0, 0, 5, 7, 0, 0, 1, 14, 9, 0, 0, 0, 7, 30, 11, 0, 0, 0, 1, 27, 55, 13, 0, 0, 0, 0, 9, 77, 91, 15, 0, 0, 0, 0, 1, 44, 182, 140, 17, 0, 0, 0, 0, 0, 11, 156, 378, 204, 19, 0, 0, 0, 0, 0, 1, 65, 450, 714, 285, 21, 0
Offset: 0

Views

Author

Philippe Deléham, Feb 24 2012

Keywords

Comments

Previous name was: "A scaled version of triangle A082985."
Triangle, read by rows, given by (0, 1/3, -1/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (3, -4/3, 1/3, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Examples

			Triangle begins :
1
0, 3
0, 1, 5
0, 0, 5, 7
0, 0, 1, 14, 9
0, 0, 0, 7, 30, 11
0, 0, 0, 1, 27, 55, 13
0, 0, 0, 0, 9, 77, 91, 15
0, 0, 0, 0, 1, 44, 182, 140, 17
0, 0, 0, 0, 0, 11, 156, 378, 204, 19
0, 0, 0, 0, 0, 1, 65, 450, 714, 285, 21
0, 0, 0, 0, 0, 0, 13, 275, 1122, 1254, 385, 23
		

Crossrefs

Cf. A082985 which is another version of this triangle.
Cf. Diagonals : A005408, A000330, A005585, A050486, A054333, A057788. Cf. A119900.

Programs

  • Maple
    s := (1+y*x)/(1-2*y*x+y*(y-1)*x^2): t := series(s,x,12):
    seq(print(seq(coeff(coeff(t,x,n),y,m),m=0..n)),n=0..11); # Peter Luschny, Aug 17 2016

Formula

T(n,k) = 2*T(n-1,k-1) + T(n-2,k-1) - T(n-2,k-2), T(0,0) = 1, T(1,0) = 0, T(1,1) = 3.
G.f.: (1+y*x)/(1-2*y*x+y*(y-1)*x^2).
Sum_{i, i>=0} T(n+i,n) = A000204(2*n+1).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A078069(n), A000007(n), A003945(n), A111566(n) for x = -1, 0, 1, 2 respectively.
Sum_{k, 0<=k<=n} T(n,k)*x^(n-k) = A090131(n), A005408(n), A003945(n), A078057(n), A028859(n), A000244(n), A063782(n), A180168(n) for x = -1, 0, 1, 2, 3, 4, 5, 6 respectively.
From Peter Bala, Aug 17 2016: (Start)
Let S(k,n) = Sum_{i = 1..n} i^k. Calculations in Zielinski 2016 suggest the following identity holds involving the p-th row elements of this triangle:
Sum_{k = 0..p} T(p,k)*S(2*k,n) = 1/2*(2*n + 1)*(n*(n + 1))^p.
For example, for row 6 we find S(6,n) + 27*S(8,n) + 55*S(10,n) + 13*S(12,n) = 1/2*(2*n + 1)*(n*(n + 1))^6.
There appears to be a similar result for the odd power sums S(2*k + 1,n) involving A119900. (End)

Extensions

New name using a formula of the author from Peter Luschny, Aug 17 2016

A104711 Triangle T(n,m) = sum_{k=m..n} A001263(k,m).

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 10, 7, 1, 5, 20, 27, 11, 1, 6, 35, 77, 61, 16, 1, 7, 56, 182, 236, 121, 22, 1, 8, 84, 378, 726, 611, 218, 29, 1, 9, 120, 714, 1902, 2375, 1394, 365, 37, 1, 10, 165, 1254, 4422, 7667, 6686, 2885, 577, 46, 1, 11, 220, 2079, 9372, 21527, 26090, 16745
Offset: 1

Views

Author

Gary W. Adamson, Mar 19 2005

Keywords

Comments

This summation over columns of the Narayana triangle could also be defined as a multiplication
of the Narayana triangle from the left by the lower-left triangle represented by the all-1 sequence A000012.

Examples

			First few rows of the triangle are:
1;
2, 1;
3, 4, 1;
4, 10, 7, 1;
5, 20, 27, 11, 1;
6, 35, 77, 61, 16, 1;
...
		

Crossrefs

Programs

  • Python
    from sympy import binomial
    def A001263(n,m):
        return binomial(n-1,m-1)*binomial(n,m-1)//m
    def A104711(n,m):
        a = 0
        for k in range(m,n+1):
            a += A001263(k,m)
        return a
    print([A104711(n,m) for n in range(20) for m in range(1,n+1)]) # R. J. Mathar, Oct 11 2009

Formula

Row sums: sum_{m=1..n} T(n,m) = A014138(n).

Extensions

Extended by R. J. Mathar, Oct 11 2009

A129710 Triangle read by rows: T(n,k) is the number of Fibonacci binary words of length n and having k 01 subwords (0 <= k <= floor(n/2)). A Fibonacci binary word is a binary word having no 00 subword.

Original entry on oeis.org

1, 2, 2, 1, 2, 3, 2, 5, 1, 2, 7, 4, 2, 9, 9, 1, 2, 11, 16, 5, 2, 13, 25, 14, 1, 2, 15, 36, 30, 6, 2, 17, 49, 55, 20, 1, 2, 19, 64, 91, 50, 7, 2, 21, 81, 140, 105, 27, 1, 2, 23, 100, 204, 196, 77, 8, 2, 25, 121, 285, 336, 182, 35, 1, 2, 27, 144, 385, 540, 378, 112, 9, 2, 29, 169, 506
Offset: 0

Views

Author

Emeric Deutsch, May 12 2007

Keywords

Comments

Also number of Fibonacci binary words of length n and having k 10 subwords.
Row n has 1+floor(n/2) terms.
Row sums are the Fibonacci numbers (A000045).
T(n,0)=2 for n >= 1.
Sum_{k>=0} k*T(n,k) = A023610(n-2).
Triangle, with zeros omitted, given by (2, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 14 2012
Riordan array ((1+x)/(1-x), x^2/(1-x)), zeros omitted. - Philippe Deléham, Jan 14 2012

Examples

			T(5,2)=4 because we have 10101, 01101, 01010 and 01011.
Triangle starts:
  1;
  2;
  2, 1;
  2, 3;
  2, 5, 1;
  2, 7, 4;
  2, 9, 9, 1;
Triangle (2, -1, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, ...) begins:
  1;
  2, 0;
  2, 1, 0;
  2, 3, 0, 0;
  2, 5, 1, 0, 0;
  2, 7, 4, 0, 0, 0;
  2, 9, 9, 1, 0, 0, 0;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if n=0 and k=0 then 1 elif k<=floor(n/2) then binomial(n-k,k)+binomial(n-k-1,k) else 0 fi end: for n from 0 to 18 do seq(T(n,k),k=0..floor(n/2)) od; # yields sequence in triangular form
  • Mathematica
    MapAt[# - 1 &, #, 1] &@ Table[Binomial[n - k, k] + Binomial[n - k - 1, k], {n, 0, 16}, {k, 0, Floor[n/2]}] // Flatten (* Michael De Vlieger, Nov 15 2019 *)

Formula

T(n,k) = binomial(n-k,k) + binomial(n-k-1,k) for n >= 1 and 0 <= k <= floor(n/2).
G.f. = G(t,z) = (1+z)/(1-z-tz^2).
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A078050(n), A057079(n), A040000(n), A000045(n+2), A000079(n), A006138(n), A026597(n), A133407(n), A133467(n), A133469(n), A133479(n), A133558(n), A133577(n), A063092(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 respectively. - Philippe Deléham, Jan 14 2012
T(n,k) = T(n-1,k) + T(n-2,k-1) with T(0,0)=1, T(1,0)=2, T(1,1)=0 and T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Jan 14 2012

A259775 Stepped path in P(k,n) array of k-th partial sums of squares (A000290).

Original entry on oeis.org

1, 5, 6, 20, 27, 77, 112, 294, 450, 1122, 1782, 4290, 7007, 16445, 27456, 63206, 107406, 243542, 419900, 940576, 1641486, 3640210, 6418656, 14115100, 25110020, 54826020, 98285670, 213286590, 384942375
Offset: 1

Views

Author

Luciano Ancora, Jul 05 2015

Keywords

Comments

The term "stepped path" in the name field is the same used in A001405.
Interleaving of terms of the sequences A220101 and A129869. - Michel Marcus, Jul 05 2015

Examples

			The array of k-th partial sums of squares begins:
[1], [5],  14,   30,    55,     91,  ...  A000330
1,   [6], [20],  50,   105,    196,  ...  A002415
1,    7,  [27], [77],  182,    378,  ...  A005585
1,    8,   35, [112], [294],   672,  ...  A040977
1,    9,   44,  156,  [450], [1122], ...  A050486
1,   10,   54,  210,   660,  [1782], ...  A053347
This is essentially A110813 without its first two columns.
		

Crossrefs

Programs

  • Mathematica
    Table[DifferenceRoot[Function[{a, n}, {(-9168 - 14432*n - 8412*n^2 - 2152*n^3 - 204*n^4)*a[n] +(-1332 - 1902*n - 792*n^2 - 102*n^3)*a[1 + n] + (2100 + 3884*n + 2493*n^2 + 640*n^3 + 51*n^4)*a[2 + n] == 0, a[1] == 1 , a[2] == 5}]][n], {n, 29}]

Formula

Conjecture: -(n+5)*(13*n-11)*a(n) +(8*n^2+39*n-35)*a(n-1) +2*(26*n^2+48*n+25)*a(n-2) -4*(8*n+5)*(n-1)*a(n-3)=0. - R. J. Mathar, Jul 16 2015

A266561 12-dimensional square numbers.

Original entry on oeis.org

1, 14, 104, 546, 2275, 8008, 24752, 68952, 176358, 419900, 940576, 1998724, 4056234, 7904456, 14858000, 27041560, 47805615, 82317690, 138389160, 227613750, 366913365, 580610160, 903171360, 1382805840, 2086129500, 3104160696, 4559958144, 6618272584
Offset: 0

Views

Author

Antal Pinter, Dec 31 2015

Keywords

Comments

2*a(n) is number of ways to place 11 queens on an (n+11) X (n+11) chessboard so that they diagonally attack each other exactly 55 times. The maximal possible attack number, p=binomial(k,2)=55 for k=11 queens, is achievable only when all queens are on the same diagonal. In graph-theory representation they thus form the corresponding complete graph.

Crossrefs

Programs

  • Magma
    [Binomial(n+11,11)*(n+6)/6: n in [0..40]]; // Vincenzo Librandi, Jan 01 2016
  • Mathematica
    CoefficientList[Series[(1 + x)/(1 - x)^13, {x, 0, 33}], x] (* Vincenzo Librandi, Jan 01 2016 *)

Formula

a(n) = binomial(n+11,11)*(n+6)/6.
a(n) = 2*binomial(n+12,12) - binomial(n+11,11).
a(n) = binomial(n+11,11) + 2*binomial(n+11,12) for n>0.
G.f.: (1+x)/(1-x)^13. - Vincenzo Librandi, Jan 01 2016

A271567 Convolution of nonzero triangular numbers (A000217) and nonzero tetradecagonal numbers (A051866).

Original entry on oeis.org

1, 17, 87, 287, 742, 1638, 3234, 5874, 9999, 16159, 25025, 37401, 54236, 76636, 105876, 143412, 190893, 250173, 323323, 412643, 520674, 650210, 804310, 986310, 1199835, 1448811, 1737477, 2070397, 2452472, 2888952, 3385448, 3947944, 4582809, 5296809, 6097119
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 12 2016

Keywords

Comments

More generally, the ordinary generating function for the convolution of triangular numbers and k-gonal numbers is (1 + (k - 3)*x)/(1 - x)^6.

Crossrefs

Cf. similar sequences of the convolution of triangular numbers and k-gonal numbers: A005585 (k=4), A051836 (k=5), A034263 (k=6), A027800 (k=7), A051843 (k=8), A051877 (k=9), A051878 (k=10), A051879 (k=11), A051880 (k=12), A056118 (k=13), this sequence (k=14).

Programs

  • Magma
    /* From definition: */ P:=func; /*, where P(n, k) is the n-th k-gonal number, */ [&+[P(n+1-i, 3)*P(i, 14): i in [1..n]]: n in [1..40]]; // Bruno Berselli, Apr 18 2016
    
  • Magma
    [(n+1)*(n+2)*(n+3)*(n+4)*(12*n+5)/120: n in [0..40]]; // Bruno Berselli, Apr 18 2016
  • Mathematica
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 17, 87, 287, 742, 1638}, 40]
    Table[(n + 1) (n + 2) (n + 3) (n + 4) (12 n + 5)/120, {n, 0, 40}]

Formula

O.g.f.: (1 + 11*x)/(1 - x)^6.
E.g.f.: (120 + 1920*x + 3240*x^2 + 1520*x^3 + 245*x^4 + 12*x^5)*exp(x)/120.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = (n + 1)*(n + 2)*(n + 3)*(n + 4)*(12*n + 5)/120.
Sum_{n>=0} 1/a(n) = 20*((15552*(6*log(2) + 3*log(3) + 2*sqrt(3)*log(2 - sqrt(3)) + (2 - sqrt(3))*Pi) - 29449)/531867) = 1.07654258697...

Extensions

Edited by Bruno Berselli, Apr 18 2016

A271663 Convolution of nonzero squares (A000290) with nonzero pentagonal numbers (A000326).

Original entry on oeis.org

1, 9, 41, 131, 336, 742, 1470, 2682, 4587, 7447, 11583, 17381, 25298, 35868, 49708, 67524, 90117, 118389, 153349, 196119, 247940, 310178, 384330, 472030, 575055, 695331, 834939, 996121, 1181286, 1393016, 1634072, 1907400, 2216137, 2563617, 2953377, 3389163, 3874936
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 12 2016

Keywords

Comments

More generally, the ordinary generating function for the convolution of nonzero h-gonal numbers and k-gonal numbers is (1 + (h - 3)*x)*(1 + (k - 3)*x)/(1 - x)^6.

Crossrefs

Cf. A005585: convolution of nonzero squares with nonzero triangular numbers.
Cf. A033455: convolution of nonzero squares with themselves.
Cf. A051836 (after 0): convolution of nonzero triangular numbers with nonzero pentagonal numbers.

Programs

  • Magma
    /* From definition: */ P:=func; /*, where P(n,k) is the n-th k-gonal number, */ [&+[P(n+1-i,4)*P(i,5): i in [1..n]]: n in [1..40]]; // Bruno Berselli, Apr 12 2016
    
  • Magma
    [(n+1)*(n+2)*(n+3)*(6*n^2+19*n+20)/120: n in [0..40]]; // Bruno Berselli, Apr 12 2016
  • Mathematica
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 9, 41, 131, 336, 742}, 40]
    Table[(n + 1) (n + 2) (n + 3) (6 n^2 + 19 n + 20)/120, {n, 0, 40}]
    With[{nmax = 50}, CoefficientList[Series[(120 + 960*x + 1440*x^2 + 680*x^3 + 115*x^4 + 6*x^5)*Exp[x]/120, {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jun 07 2017 *)
  • PARI
    vector(40, n, n--; (n+1)*(n+2)*(n+3)*(6*n^2+19*n+20)/120) \\ Altug Alkan, Apr 12 2016
    

Formula

O.g.f.: (1 + x)*(1 + 2*x)/(1 - x)^6.
E.g.f.: (120 + 960*x + 1440*x^2 + 680*x^3 + 115*x^4 + 6*x^5)*exp(x)/120.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = (n + 1)*(n + 2)*(n + 3)*(6*n^2 + 19*n + 20)/120.
Sum_{n>=0} 1/a(n) = 1.149165731...

Extensions

Edited by Bruno Berselli, Apr 12 2016

A339355 Maximum number of copies of a 12345 permutation pattern in an alternating (or zig-zag) permutation of length n + 7.

Original entry on oeis.org

8, 16, 64, 112, 272, 432, 832, 1232, 2072, 2912, 4480, 6048, 8736, 11424, 15744, 20064, 26664, 33264, 42944, 52624, 66352, 80080, 99008, 117936, 143416, 168896, 202496, 236096, 279616, 323136, 378624, 434112, 503880, 573648, 660288, 746928, 853328, 959728, 1089088, 1218448
Offset: 1

Views

Author

Lara Pudwell, Dec 01 2020

Keywords

Comments

The maximum number of copies of 123 in an alternating permutation is motivated in the Notices reference, and the argument here is analogous.

Examples

			a(1) = 8. The alternating permutation of length 1 + 7 = 8 with the maximum number of copies of 12345 is 13254768. The eight copies are 12468, 12478, 12568, 12578, 13468, 13478, 13568, and 13578.
		

Crossrefs

Programs

  • Maple
    a := proc(n2) local n; n:= floor(n2/2): if n2 = 2*n then 32*binomial(n+4,5) - 16*binomial(n+3,4) else n:=n+1; (4*n*(n^4+5*n^3+10*n^2+10*n+4))/15 fi end; seq(a(n), n=1..20); # Georg Fischer, Nov 25 2022

Formula

a(2*n) = 16*A005585(n) = 32*binomial(n+4, 5) - 16*binomial(n+3, 4).
a(2*n-1) = 8*A033455(n) = (4*n*(n^4 + 5*n^3 + 10*n^2 + 10*n + 4))/15.
D-finite with recurrence: (n-1)*((n-3)^2+9*n-6)*a(n) - (2*(n-3)^2+20*n-16)*a(n-1) - (n+5)*((n-3)^2+11*n-2)*a(n-2) = 0. - Georg Fischer, Nov 25 2022
Previous Showing 31-40 of 40 results.