A213561
Rectangular array: (row n) = b**c, where b(h) = h^2, c(h) = m*(m+1)/2, m=n-1+h, n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
1, 7, 3, 27, 18, 6, 77, 61, 34, 10, 182, 157, 109, 55, 15, 378, 342, 267, 171, 81, 21, 714, 665, 557, 407, 247, 112, 28, 1254, 1190, 1043, 827, 577, 337, 148, 36, 2079, 1998, 1806, 1512, 1152, 777, 441, 189, 45, 3289, 3189, 2946, 2562, 2072, 1532
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
1....7.....27....77....182
3....18....61....157...342
6....34....109...267...557
10...55....171...407...827
15...81....247...577...1152
21...112...337...777...1532
-
b[n_] := n^2; c[n_] := n (n + 1)/2
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213561 *)
d = Table[t[n, n], {n, 1, 40}] (* A213562 *)
s1 = Table[s[n], {n, 1, 50}] (* A213563 *)
A067056
a(n) = (1)*(2 + 3 + 4 + ... + n) + (1 + 2)*(3 + 4 + 5 + ... + n) + (1 + 2 + 3)*(4 + 5 + 6 + ... + n) + ... + (1 + 2 + 3 + ... + n-1)*n.
Original entry on oeis.org
1, 2, 14, 54, 154, 364, 756, 1428, 2508, 4158, 6578, 10010, 14742, 21112, 29512, 40392, 54264, 71706, 93366, 119966, 152306, 191268, 237820, 293020, 358020, 434070, 522522, 624834, 742574, 877424, 1031184, 1205776, 1403248, 1625778, 1875678, 2155398, 2467530
Offset: 1
a(4) = (1)*(2+3+4) + (1+2)*(3+4) + (1+2+3)*(4) = 9 + 21 + 24 = 54.
- Colin Barker, Table of n, a(n) for n = 1..1000
- Bünyamin Şahin, Level Polynomials of Rooted Trees, 2023.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
-
Join[{1},Table[Total[Total[#[[1]]Total[#[[2]]]]&/@Table[TakeDrop[ Range[ k],n],{n,k-1}]],{k,2,40}]] (* Requires Mathematica version 10 or later *) (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{1,2,14,54,154,364,756},40] (* Harvey P. Dale, Jul 17 2020 *)
-
t(n) = n*(n+1)/2;
a(n) = if (n=1, 1, sum(k=1, n-1, t(k)*(t(n) - t(k)))); \\ Michel Marcus, Mar 06 2018
-
Vec(x*(1 - 4*x + 17*x^2 - 20*x^3 + 15*x^4 - 6*x^5 + x^6) / (1 - x)^6 + O(x^60)) \\ Colin Barker, Mar 06 2018
A207543
Triangle read by rows, expansion of (1+y*x)/(1-2*y*x+y*(y-1)*x^2).
Original entry on oeis.org
1, 0, 3, 0, 1, 5, 0, 0, 5, 7, 0, 0, 1, 14, 9, 0, 0, 0, 7, 30, 11, 0, 0, 0, 1, 27, 55, 13, 0, 0, 0, 0, 9, 77, 91, 15, 0, 0, 0, 0, 1, 44, 182, 140, 17, 0, 0, 0, 0, 0, 11, 156, 378, 204, 19, 0, 0, 0, 0, 0, 1, 65, 450, 714, 285, 21, 0
Offset: 0
Triangle begins :
1
0, 3
0, 1, 5
0, 0, 5, 7
0, 0, 1, 14, 9
0, 0, 0, 7, 30, 11
0, 0, 0, 1, 27, 55, 13
0, 0, 0, 0, 9, 77, 91, 15
0, 0, 0, 0, 1, 44, 182, 140, 17
0, 0, 0, 0, 0, 11, 156, 378, 204, 19
0, 0, 0, 0, 0, 1, 65, 450, 714, 285, 21
0, 0, 0, 0, 0, 0, 13, 275, 1122, 1254, 385, 23
Cf.
A082985 which is another version of this triangle.
-
s := (1+y*x)/(1-2*y*x+y*(y-1)*x^2): t := series(s,x,12):
seq(print(seq(coeff(coeff(t,x,n),y,m),m=0..n)),n=0..11); # Peter Luschny, Aug 17 2016
New name using a formula of the author from
Peter Luschny, Aug 17 2016
A104711
Triangle T(n,m) = sum_{k=m..n} A001263(k,m).
Original entry on oeis.org
1, 2, 1, 3, 4, 1, 4, 10, 7, 1, 5, 20, 27, 11, 1, 6, 35, 77, 61, 16, 1, 7, 56, 182, 236, 121, 22, 1, 8, 84, 378, 726, 611, 218, 29, 1, 9, 120, 714, 1902, 2375, 1394, 365, 37, 1, 10, 165, 1254, 4422, 7667, 6686, 2885, 577, 46, 1, 11, 220, 2079, 9372, 21527, 26090, 16745
Offset: 1
First few rows of the triangle are:
1;
2, 1;
3, 4, 1;
4, 10, 7, 1;
5, 20, 27, 11, 1;
6, 35, 77, 61, 16, 1;
...
-
from sympy import binomial
def A001263(n,m):
return binomial(n-1,m-1)*binomial(n,m-1)//m
def A104711(n,m):
a = 0
for k in range(m,n+1):
a += A001263(k,m)
return a
print([A104711(n,m) for n in range(20) for m in range(1,n+1)]) # R. J. Mathar, Oct 11 2009
A129710
Triangle read by rows: T(n,k) is the number of Fibonacci binary words of length n and having k 01 subwords (0 <= k <= floor(n/2)). A Fibonacci binary word is a binary word having no 00 subword.
Original entry on oeis.org
1, 2, 2, 1, 2, 3, 2, 5, 1, 2, 7, 4, 2, 9, 9, 1, 2, 11, 16, 5, 2, 13, 25, 14, 1, 2, 15, 36, 30, 6, 2, 17, 49, 55, 20, 1, 2, 19, 64, 91, 50, 7, 2, 21, 81, 140, 105, 27, 1, 2, 23, 100, 204, 196, 77, 8, 2, 25, 121, 285, 336, 182, 35, 1, 2, 27, 144, 385, 540, 378, 112, 9, 2, 29, 169, 506
Offset: 0
T(5,2)=4 because we have 10101, 01101, 01010 and 01011.
Triangle starts:
1;
2;
2, 1;
2, 3;
2, 5, 1;
2, 7, 4;
2, 9, 9, 1;
Triangle (2, -1, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, ...) begins:
1;
2, 0;
2, 1, 0;
2, 3, 0, 0;
2, 5, 1, 0, 0;
2, 7, 4, 0, 0, 0;
2, 9, 9, 1, 0, 0, 0;
Columns:
A040000,
A005408,
A000290,
A000330,
A002415,
A005585,
A040977,
A050486,
A053347,
A054333,
A054334,
A057788.
-
T:=proc(n,k) if n=0 and k=0 then 1 elif k<=floor(n/2) then binomial(n-k,k)+binomial(n-k-1,k) else 0 fi end: for n from 0 to 18 do seq(T(n,k),k=0..floor(n/2)) od; # yields sequence in triangular form
-
MapAt[# - 1 &, #, 1] &@ Table[Binomial[n - k, k] + Binomial[n - k - 1, k], {n, 0, 16}, {k, 0, Floor[n/2]}] // Flatten (* Michael De Vlieger, Nov 15 2019 *)
A259775
Stepped path in P(k,n) array of k-th partial sums of squares (A000290).
Original entry on oeis.org
1, 5, 6, 20, 27, 77, 112, 294, 450, 1122, 1782, 4290, 7007, 16445, 27456, 63206, 107406, 243542, 419900, 940576, 1641486, 3640210, 6418656, 14115100, 25110020, 54826020, 98285670, 213286590, 384942375
Offset: 1
The array of k-th partial sums of squares begins:
[1], [5], 14, 30, 55, 91, ... A000330
1, [6], [20], 50, 105, 196, ... A002415
1, 7, [27], [77], 182, 378, ... A005585
1, 8, 35, [112], [294], 672, ... A040977
1, 9, 44, 156, [450], [1122], ... A050486
1, 10, 54, 210, 660, [1782], ... A053347
This is essentially A110813 without its first two columns.
-
Table[DifferenceRoot[Function[{a, n}, {(-9168 - 14432*n - 8412*n^2 - 2152*n^3 - 204*n^4)*a[n] +(-1332 - 1902*n - 792*n^2 - 102*n^3)*a[1 + n] + (2100 + 3884*n + 2493*n^2 + 640*n^3 + 51*n^4)*a[2 + n] == 0, a[1] == 1 , a[2] == 5}]][n], {n, 29}]
A266561
12-dimensional square numbers.
Original entry on oeis.org
1, 14, 104, 546, 2275, 8008, 24752, 68952, 176358, 419900, 940576, 1998724, 4056234, 7904456, 14858000, 27041560, 47805615, 82317690, 138389160, 227613750, 366913365, 580610160, 903171360, 1382805840, 2086129500, 3104160696, 4559958144, 6618272584
Offset: 0
-
[Binomial(n+11,11)*(n+6)/6: n in [0..40]]; // Vincenzo Librandi, Jan 01 2016
-
CoefficientList[Series[(1 + x)/(1 - x)^13, {x, 0, 33}], x] (* Vincenzo Librandi, Jan 01 2016 *)
A271567
Convolution of nonzero triangular numbers (A000217) and nonzero tetradecagonal numbers (A051866).
Original entry on oeis.org
1, 17, 87, 287, 742, 1638, 3234, 5874, 9999, 16159, 25025, 37401, 54236, 76636, 105876, 143412, 190893, 250173, 323323, 412643, 520674, 650210, 804310, 986310, 1199835, 1448811, 1737477, 2070397, 2452472, 2888952, 3385448, 3947944, 4582809, 5296809, 6097119
Offset: 0
Cf. similar sequences of the convolution of triangular numbers and k-gonal numbers:
A005585 (k=4),
A051836 (k=5),
A034263 (k=6),
A027800 (k=7),
A051843 (k=8),
A051877 (k=9),
A051878 (k=10),
A051879 (k=11),
A051880 (k=12),
A056118 (k=13), this sequence (k=14).
-
/* From definition: */ P:=func; /*, where P(n, k) is the n-th k-gonal number, */ [&+[P(n+1-i, 3)*P(i, 14): i in [1..n]]: n in [1..40]]; // Bruno Berselli, Apr 18 2016
-
[(n+1)*(n+2)*(n+3)*(n+4)*(12*n+5)/120: n in [0..40]]; // Bruno Berselli, Apr 18 2016
-
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 17, 87, 287, 742, 1638}, 40]
Table[(n + 1) (n + 2) (n + 3) (n + 4) (12 n + 5)/120, {n, 0, 40}]
A271663
Convolution of nonzero squares (A000290) with nonzero pentagonal numbers (A000326).
Original entry on oeis.org
1, 9, 41, 131, 336, 742, 1470, 2682, 4587, 7447, 11583, 17381, 25298, 35868, 49708, 67524, 90117, 118389, 153349, 196119, 247940, 310178, 384330, 472030, 575055, 695331, 834939, 996121, 1181286, 1393016, 1634072, 1907400, 2216137, 2563617, 2953377, 3389163, 3874936
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- OEIS Wiki, Figurate numbers
- Eric Weisstein's World of Mathematics, Square Number
- Eric Weisstein's World of Mathematics, Pentagonal Number
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1)
Cf.
A005585: convolution of nonzero squares with nonzero triangular numbers.
Cf.
A033455: convolution of nonzero squares with themselves.
Cf.
A051836 (after 0): convolution of nonzero triangular numbers with nonzero pentagonal numbers.
-
/* From definition: */ P:=func; /*, where P(n,k) is the n-th k-gonal number, */ [&+[P(n+1-i,4)*P(i,5): i in [1..n]]: n in [1..40]]; // Bruno Berselli, Apr 12 2016
-
[(n+1)*(n+2)*(n+3)*(6*n^2+19*n+20)/120: n in [0..40]]; // Bruno Berselli, Apr 12 2016
-
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 9, 41, 131, 336, 742}, 40]
Table[(n + 1) (n + 2) (n + 3) (6 n^2 + 19 n + 20)/120, {n, 0, 40}]
With[{nmax = 50}, CoefficientList[Series[(120 + 960*x + 1440*x^2 + 680*x^3 + 115*x^4 + 6*x^5)*Exp[x]/120, {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jun 07 2017 *)
-
vector(40, n, n--; (n+1)*(n+2)*(n+3)*(6*n^2+19*n+20)/120) \\ Altug Alkan, Apr 12 2016
A339355
Maximum number of copies of a 12345 permutation pattern in an alternating (or zig-zag) permutation of length n + 7.
Original entry on oeis.org
8, 16, 64, 112, 272, 432, 832, 1232, 2072, 2912, 4480, 6048, 8736, 11424, 15744, 20064, 26664, 33264, 42944, 52624, 66352, 80080, 99008, 117936, 143416, 168896, 202496, 236096, 279616, 323136, 378624, 434112, 503880, 573648, 660288, 746928, 853328, 959728, 1089088, 1218448
Offset: 1
a(1) = 8. The alternating permutation of length 1 + 7 = 8 with the maximum number of copies of 12345 is 13254768. The eight copies are 12468, 12478, 12568, 12578, 13468, 13478, 13568, and 13578.
-
a := proc(n2) local n; n:= floor(n2/2): if n2 = 2*n then 32*binomial(n+4,5) - 16*binomial(n+3,4) else n:=n+1; (4*n*(n^4+5*n^3+10*n^2+10*n+4))/15 fi end; seq(a(n), n=1..20); # Georg Fischer, Nov 25 2022
Comments