cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 99 results. Next

A049098 Primes p such that p+1 is divisible by a square.

Original entry on oeis.org

3, 7, 11, 17, 19, 23, 31, 43, 47, 53, 59, 67, 71, 79, 83, 89, 97, 103, 107, 127, 131, 139, 149, 151, 163, 167, 179, 191, 197, 199, 211, 223, 227, 233, 239, 241, 251, 263, 269, 271, 283, 293, 307, 311, 331, 337, 347, 349, 359, 367, 379, 383, 419, 431, 439, 443
Offset: 1

Views

Author

Keywords

Comments

Numbers m such that A010051(m)*(1-A008966(m+1)) = 1. - Reinhard Zumkeller, May 21 2009
This sequence is infinite and its relative density in the sequence of primes is equal to 1 - Product_{p prime} (1-1/(p*(p-1))) = 1 - A005596 = 0.626044... (Mirsky, 1949). - Amiram Eldar, Feb 14 2021

Examples

			31 is a term because 32 is divisible by a square, 16.
101 is not a term because 102 = 2*3*17 is squarefree.
		

Crossrefs

Cf. A005596, A008966, A010051, A049097 (complement with respect to A000040), A160696.

Programs

  • Haskell
    a049098 n = a049098_list !! (n-1)
    a049098_list = filter ((== 0) . a008966 . (+ 1)) a000040_list
    -- Reinhard Zumkeller, Oct 18 2011
    
  • Maple
    with(numtheory): a := proc (n) if isprime(n) = true and issqrfree(n+1) = false then n else end if end proc: seq(a(n), n = 1 .. 500); # Emeric Deutsch, Jun 21 2009
  • Mathematica
    Select[Prime[Range[200]],!SquareFreeQ[#+1]&]   (* Harvey P. Dale, Mar 27 2011 *)
    Select[Prime[Range[200]], MoebiusMu[# + 1] == 0 &] (* Alonso del Arte, Oct 18 2011 *)
  • PARI
    forprime(p=2,1e4,if(!issquarefree(p+1),print1(p", "))) \\ Charles R Greathouse IV, Oct 18 2011

Formula

A160696(a(n)) > 1. - Reinhard Zumkeller, May 24 2009

A065415 Decimal expansion of Product_{p prime} (1-1/(p^4-p^3)).

Original entry on oeis.org

8, 5, 6, 5, 4, 0, 4, 4, 4, 8, 5, 3, 5, 4, 2, 1, 7, 4, 4, 2, 6, 1, 6, 7, 9, 8, 4, 1, 3, 5, 9, 5, 3, 8, 8, 2, 1, 6, 6, 5, 7, 2, 8, 0, 0, 3, 1, 7, 6, 5, 2, 1, 4, 0, 3, 2, 5, 4, 8, 3, 2, 1, 6, 1, 6, 9, 4, 3, 1, 4, 4, 9, 8, 0, 3, 5, 9, 8, 9, 6, 3, 9, 2, 8, 3, 2, 3, 1, 1, 3, 0, 8, 2, 5, 9, 2, 0, 7, 1
Offset: 0

Views

Author

N. J. A. Sloane, Nov 15 2001

Keywords

Examples

			0.85654044485354217442616798413595388...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.4, p. 105.

Crossrefs

Programs

  • Mathematica
    digits = 99; $MaxExtraPrecision = 400; m0 = 1000; dm = 100; Clear[s]; LR = LinearRecurrence[{2, -1, 0, 1, -1}, {0, 0, 0, 4, 5, 6}, 2 m0]; r[n_Integer] := LR[[n]]; s[m_] := s[m] = NSum[-r[n] PrimeZetaP[n]/n, {n, 3, m}, NSumTerms -> m0, WorkingPrecision -> 400] // Exp; s[m0]; s[m = m0 + dm]; While[RealDigits[s[m], 10, digits][[1]] != RealDigits[s[m-dm], 10, digits][[1]], Print[m]; m = m+dm]; RealDigits[s[m], 10, digits][[1]] (* Jean-François Alcover, Apr 15 2016 *)
  • PARI
    prodeulerrat(1-1/(p^4-p^3)) \\ Amiram Eldar, Mar 13 2021

A065416 Decimal expansion of Product_{p prime} (1-1/(p^5-p^4)).

Original entry on oeis.org

9, 3, 1, 2, 6, 5, 1, 8, 4, 1, 6, 0, 0, 0, 4, 3, 3, 4, 3, 8, 9, 2, 3, 7, 2, 0, 5, 5, 5, 0, 6, 7, 6, 9, 8, 2, 5, 5, 8, 4, 2, 3, 7, 3, 4, 5, 8, 7, 8, 0, 1, 0, 5, 9, 0, 1, 6, 9, 8, 7, 7, 1, 5, 4, 5, 9, 5, 4, 3, 3, 6, 0, 2, 8, 6, 8, 2, 3, 8, 5, 1, 5, 8, 2, 5, 1, 2, 8, 9, 6, 4, 8, 1, 0, 8, 9, 5, 1, 5
Offset: 0

Views

Author

N. J. A. Sloane, Nov 15 2001

Keywords

Examples

			0.93126518416000433438923720555067698...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.4, p. 105.

Crossrefs

Programs

  • Mathematica
    digits = 99; $MaxExtraPrecision = 400; m0 = 1000; dm = 100; Clear[s]; LR = LinearRecurrence[{2, -1, 0, 0, 1, -1}, {0, 0, 0, 0, 5, 6}, 2 m0]; r[n_Integer] := LR[[n]]; s[m_] := s[m] = NSum[-r[n] PrimeZetaP[n]/n, {n, 5, m}, NSumTerms -> m0, WorkingPrecision -> 400] // Exp; s[m0]; s[m = m0 + dm]; While[RealDigits[s[m], 10, digits][[1]] != RealDigits[s[m-dm], 10, digits][[1]], Print[m]; m = m+dm]; RealDigits[s[m], 10, digits][[1]] (* Jean-François Alcover, Apr 15 2016 *)
  • PARI
    prodeulerrat(1-1/(p^5-p^4)) \\ Amiram Eldar, Mar 12 2021

A065488 Decimal expansion of Product_{p prime} (1 + 1/(p^2-p-1)).

Original entry on oeis.org

2, 6, 7, 4, 1, 1, 2, 7, 2, 5, 5, 7, 0, 0, 2, 1, 5, 0, 8, 9, 6, 0, 4, 1, 1, 8, 3, 0, 4, 4, 5, 4, 8, 8, 0, 3, 7, 5, 0, 2, 3, 9, 8, 6, 2, 8, 3, 9, 7, 6, 9, 1, 9, 8, 5, 2, 0, 0, 8, 1, 9, 0, 4, 1, 9, 6, 0, 8, 6, 5, 9, 5, 6, 1, 0, 5, 3, 0, 2, 8, 6, 8, 6, 4, 4, 8, 5, 0, 9, 2, 9, 7, 1, 7, 3, 4, 8, 5, 7
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Comments

This is 1/Artin's constant, see A005596.

Examples

			2.67411272557002150896041183...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1200; digits = 99; terms = 1200; P[n_] := PrimeZetaP[n ]; LR = Join[{0, 0}, LinearRecurrence[{2, 0, -1}, {2, 3, 6}, term+10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    prodeulerrat(1 + 1/(p^2-p-1)) \\ Amiram Eldar, Mar 15 2021

A019338 Primes with primitive root 8.

Original entry on oeis.org

3, 5, 11, 29, 53, 59, 83, 101, 107, 131, 149, 173, 179, 197, 227, 269, 293, 317, 347, 389, 419, 443, 461, 467, 491, 509, 557, 563, 587, 653, 659, 677, 701, 773, 797, 821, 827, 941, 947, 1019, 1061, 1091, 1109, 1187, 1229, 1259, 1277, 1283, 1301, 1307, 1373, 1427
Offset: 1

Views

Author

Keywords

Comments

To allow primes less than the specified primitive root m (here, 8) to be included, we use the essentially equivalent definition "Primes p such that the multiplicative order of m mod p is p-1". This comment applies to all of A019334-A019421. - N. J. A. Sloane, Dec 03 2019
Members of A001122 that are not congruent to 1 mod 3. - Robert Israel, Aug 12 2014
Terms greater than 3 are congruent to 5 or 11 modulo 24. - Jianing Song, May 12 2024 [Corrected on May 13 2025]

Programs

  • Maple
    select(t -> isprime(t) and numtheory:-order(8,t) = t-1, [2*i+1 $ i=1..1000]); # Robert Israel, Aug 12 2014
  • Mathematica
    pr=8; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == #-1 &] (* N. J. A. Sloane, Jun 01 2010 *)
    a[p_, q_]:=Sum[2 Cos[2^n Pi/((2 q+1)(2 p+1))],{n,1,2 q p}]
    2 Select[Range[800],Rationalize[N[a[#, 3],20]]==1 &]+1
    (* Gerry Martens, Apr 28 2015 *)
    Join[{3,5},Select[Prime[Range[250]],PrimitiveRoot[#,8]==8&]] (* Harvey P. Dale, Aug 10 2019 *)
  • PARI
    is(n)=isprime(n) && n>2 && znorder(Mod(8,n))==n-1 \\ Charles R Greathouse IV, May 21 2015

Formula

Let a(p,q)=sum(n=1,2*p*q,2*cos(2^n*Pi/((2*q+1)*(2*p+1)))). Then 2*p+1 is a prime of this sequence when a(p,3)==1. - Gerry Martens, May 15 2015
On Artin's conjecture, a(n) ~ (5/3A) n log n, where A = A005596 is Artin's constant. - Charles R Greathouse IV, May 21 2015

A048296 Continued fraction for Artin's constant.

Original entry on oeis.org

0, 2, 1, 2, 14, 1, 1, 2, 3, 5, 1, 3, 1, 5, 1, 1, 2, 3, 5, 46, 2, 2, 4, 4, 2, 1, 6, 1, 1, 4, 2, 2, 1, 109, 1, 1, 4, 9, 3, 45, 8, 4, 1, 2, 1, 13, 13, 1, 1, 2, 1, 1, 2, 1, 4, 2, 3, 1, 17, 1, 1, 1, 6, 42, 1, 3, 1, 1, 4, 1, 1, 1, 1, 1, 2, 4, 5, 4, 1, 26, 1, 1, 74, 1, 1, 2, 1, 2, 2, 1, 1, 10, 1
Offset: 0

Views

Author

Fred Lunnon and Simon Plouffe, Dec 11 1999

Keywords

Examples

			artin = 0.37395581361920228805... = 0 + 1/(2 + 1/(1 + 1/(2 + 1/(14 + ...)))). - _Harry J. Smith_, Apr 23 2009
		

References

  • See A005596 for further references.

Crossrefs

Cf. A005596.

Programs

  • Mathematica
    digits = 105; m0 = 1000; dm = 100; Clear[s]; r[n_] := -1 + Fibonacci[n-1] + Fibonacci[n+1]; s[m_] := s[m] = NSum[-r[n] PrimeZetaP[n]/n, {n, 2, m}, NSumTerms -> m0, WorkingPrecision -> 400] // Exp; s[m0]; s[m = m0 + dm]; While[RealDigits[s[m], 10, digits][[1]] != RealDigits[s[m - dm], 10, digits][[1]], Print[m]; m = m + dm]; A = s[m]; ContinuedFraction[A, 93] (* Jean-François Alcover, Apr 15 2016 *)
  • PARI
    contfrac(prodeulerrat(1-1/(p^2-p))) \\ Amiram Eldar, Mar 12 2021

A049092 Primes p such that p-1 is not squarefree.

Original entry on oeis.org

5, 13, 17, 19, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 127, 137, 149, 151, 157, 163, 173, 181, 193, 197, 199, 229, 233, 241, 251, 257, 269, 271, 277, 281, 293, 307, 313, 317, 337, 349, 353, 373, 379, 389, 397, 401, 409, 421, 433, 449, 457, 461, 487
Offset: 1

Views

Author

Keywords

Comments

Primes p with mu(p-1)=0, where mu is the Möbius function. - T. D. Noe, Nov 03 2003
Primes p such that the sum of the primitive roots of p (see A088144) is 0 mod p. - Jon Wharf, Mar 12 2015
The relative density of this sequence within the primes is 1 - A005596 = 0.626044... - Amiram Eldar, Feb 10 2021

Examples

			p = 257 is here because p-1 = 256 = 2^8.
p = 997 is here because p-1 = 996 = 3*(2^2)*83.
		

Crossrefs

Cf. A005596, A039787, A078330 (primes p with mu(p-1)=-1), A088179 (primes p such that mu(p-1)=1), A089451 (mu(p-1) for prime p), A145199.

Programs

  • Magma
    [ p: p in PrimesUpTo(500) | not IsSquarefree(p-1) ]; // Vincenzo Librandi, Mar 12 2015
    
  • Mathematica
    Select[Prime[Range[400]], MoebiusMu[ #-1]==0&]
  • PARI
    forprime(p=2,500,if(!issquarefree(p-1),print(p))) \\ Michael B. Porter, Mar 16 2015

Formula

a(n) = A145199(n) + 1. - Amiram Eldar, Feb 10 2021

A049149 Numbers k such that the Euler totient function phi(k) is squarefree.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 9, 11, 14, 18, 22, 23, 31, 43, 46, 47, 49, 59, 62, 67, 71, 79, 83, 86, 94, 98, 103, 107, 118, 121, 131, 134, 139, 142, 158, 166, 167, 179, 191, 206, 211, 214, 223, 227, 239, 242, 262, 263, 278, 283, 311, 331, 334, 347, 358, 359, 367, 382, 383
Offset: 1

Views

Author

Keywords

Comments

Consists of 1, 2, 4, p, p^2, 2p, and 2p^2, where p are the odd primes from A039787. - Ivan Neretin, Aug 24 2016

Examples

			a(17) = 49 is here because phi(49) = 42 = 2*3*7 is squarefree. Primes p, such that p-1 is squarefree are included.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100], MoebiusMu[EulerPhi[#]] != 0 &]
  • PARI
    isok(n) = issquarefree(eulerphi(n)); \\ Michel Marcus, Aug 24 2016

Formula

The number of terms not exceeding k is (3*a/2) * pi(k) + O(k/(log(k)^c)), where pi(k) = A000720(k), c is any constant > 0, and a = 0.373955... is Artin's constant (A005596) (Pappalardi et al., 2003; Banks and Pappalardi, 2006). - Amiram Eldar, Jul 28 2020

Extensions

Corrected by T. D. Noe, Oct 25 2006

A241194 Numerator of phi(p-1)/(p-1), where phi is Euler's totient function and p = prime(n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 5, 3, 4, 1, 2, 2, 11, 6, 14, 4, 10, 12, 1, 4, 20, 5, 1, 2, 16, 26, 1, 3, 2, 24, 8, 22, 18, 4, 4, 1, 41, 21, 44, 4, 36, 1, 3, 10, 8, 12, 56, 6, 14, 48, 4, 2, 1, 65, 33, 4, 22, 12, 46, 36, 16, 12, 4, 39, 8, 2, 86, 28, 5, 89, 20, 10, 2, 95
Offset: 1

Views

Author

T. D. Noe, Apr 17 2014

Keywords

Comments

The denominators are in A241195. The new minima of phi(p-1)/(p-1) occur at primes listed in A241196. The numerator and denominator of those terms are in A241197 and A241198.
For primes p>2, the fraction phi(p - 1)/(p - 1) has the maximum value = 1/2 if and only if p is in A019434. - Geoffrey Critzer, Dec 30 2014

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 117.

Crossrefs

Programs

  • Magma
    [Numerator(EulerPhi(NthPrime(n)-1)/(NthPrime(n)-1)): n in [1..80]]; // Vincenzo Librandi, Apr 06 2015
  • Maple
    seq(numer(numtheory:-phi(ithprime(i)-1)/(ithprime(i)-1)), i=1..100); # Robert Israel, Jan 11 2015
  • Mathematica
    Numerator[Table[EulerPhi[p - 1]/(p - 1), {p, Prime[Range[100]]}]]
  • PARI
    lista(nn) = forprime(p=2, nn, print1(numerator(eulerphi(p-1)/(p-1)), ", ")); \\ Michel Marcus, Jan 03 2015
    

Formula

From Amiram Eldar, Jul 31 2020: (Start)
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{n=1..m} a(n)/A241195(n) = 0.373955... (Artin's constant, A005596).
Asymptotic mean of inverse ratio: lim_{m->oo} (1/m) * Sum_{n=1..m} A241195(n)/a(n) = 2.826419... (Murata's constant, A065485). (End)
a(n) = A076512(A006093(n)). - Ridouane Oudra, Mar 24 2025

A377177 Primes p such that -7/2 is a primitive root modulo p.

Original entry on oeis.org

11, 17, 29, 31, 37, 41, 43, 47, 73, 89, 103, 107, 109, 149, 167, 179, 197, 257, 277, 311, 313, 317, 347, 353, 367, 373, 383, 389, 409, 433, 479, 491, 499, 503, 521, 541, 557, 571, 577, 593, 601, 607, 647, 653, 659, 683, 701, 719, 727, 761, 769, 821, 839, 857, 883, 887, 907, 929, 937, 947, 983
Offset: 1

Views

Author

Jianing Song, Oct 18 2024

Keywords

Comments

If p is a term in this sequence, then -7/2 is not a square modulo p (i.e., p is in A191061).
Conjecture: this sequence has relative density equal to Artin's constant (A005596) with respect to the set of primes.

Crossrefs

Primes p such that +a/2 is a primitive root modulo p: A320384 (a=3), A377174 (a=5), A377176 (a=7), A377178 (a=9).
Primes p such that -a/2 is a primitive root modulo p: A377172 (a=3), A377175 (a=5), this sequence (a=7), A377179 (a=9).

Programs

Previous Showing 31-40 of 99 results. Next