cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 129 results. Next

A262071 Number T(n,k) of ordered partitions of an n-set with nondecreasing block sizes and maximal block size equal to k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 3, 1, 0, 24, 18, 4, 1, 0, 120, 90, 30, 5, 1, 0, 720, 630, 200, 45, 6, 1, 0, 5040, 4410, 1610, 350, 63, 7, 1, 0, 40320, 37800, 13440, 3290, 560, 84, 8, 1, 0, 362880, 340200, 130200, 30870, 5922, 840, 108, 9, 1, 0, 3628800, 3515400, 1327200, 334950, 61992, 9870, 1200, 135, 10, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 10 2015

Keywords

Examples

			T(3,1) = 6: 1|2|3, 1|3|2, 2|1|3, 2|3|1, 3|1|2, 3|2|1.
T(3,2) = 3: 1|23, 2|13, 3|12.
T(3,3) = 1: 123.
Triangle T(n,k) begins:
  1;
  0,     1;
  0,     2,     1;
  0,     6,     3,     1;
  0,    24,    18,     4,    1;
  0,   120,    90,    30,    5,   1;
  0,   720,   630,   200,   45,   6,  1;
  0,  5040,  4410,  1610,  350,  63,  7, 1;
  0, 40320, 37800, 13440, 3290, 560, 84, 8, 1;
		

Crossrefs

Columns k=0-10 give: A000007, A000142 (for n>0), A272492, A272493, A272494, A272495, A272496, A272497, A272498, A272499, A272500.
Main diagonal gives A000012.
Row sums give A005651.
T(2n,n) gives A266518.
Cf. A262072.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1)+`if`(i>n, 0, binomial(n, i)*b(n-i, i))))
        end:
    T:= (n, k)-> b(n, k) -`if`(k=0, 0, b(n, k-1)):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[i > n, 0, Binomial[n, i]*b[n - i, i]]]]; T[n_, k_] :=  b[n, k] - If[k == 0, 0, b[n, k - 1]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 12 2016, Alois P. Heinz *)

Formula

E.g.f. of column k: x^k * Product_{i=1..k} (i-1)!/(i!-x^i).

A319226 Irregular triangle where T(n,k) is the number of acyclic spanning subgraphs of a cycle graph, where the sizes of the connected components are given by the integer partition with Heinz number A215366(n,k).

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 2, 4, 4, 1, 5, 5, 5, 5, 5, 5, 1, 6, 6, 6, 3, 2, 6, 12, 9, 6, 6, 1, 7, 7, 7, 7, 14, 7, 7, 7, 7, 7, 21, 14, 7, 7, 1, 8, 8, 8, 4, 8, 8, 8, 16, 16, 8, 2, 24, 8, 24, 12, 16, 8, 32, 20, 8, 8, 1, 9, 9, 9, 9, 9, 9, 18, 9, 9, 9, 18, 18, 3, 27, 27
Offset: 1

Views

Author

Gus Wiseman, Sep 13 2018

Keywords

Comments

A refinement of A135278, up the sign these are the coefficients appearing in the expansion of power-sum symmetric functions in terms of elementary or homogeneous symmetric functions.

Examples

			Triangle begins:
  1
  2  1
  3  3  1
  4  2  4  4  1
  5  5  5  5  5  5  1
  6  6  6  3  2  6 12  9  6  6  1
The fourth row corresponds to the symmetric function identities:
  p(4) = -4 e(4) + 2 e(22) + 4 e(31) - 4 e(211) + e(1111)
  p(4) =  4 h(4) - 2 h(22) - 4 h(31) + 4 h(211) - h(1111).
		

Crossrefs

Signed versions with different row-orderings are A115131, A210258, A263916.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Partition[Range[n],2,1,1],{n-PrimeOmega[m]}],Sort[Length/@csm[Union[#,List/@Range[n]]]]==primeMS[m]&]],{n,6},{m,Sort[Times@@Prime/@#&/@IntegerPartitions[n]]}]

A300335 Number of ordered set partitions of {1,...,n} with weakly increasing block-sums.

Original entry on oeis.org

1, 1, 2, 6, 18, 65, 258, 1156, 5558, 29029, 161942, 967921, 6110687, 40807420, 286177944, 2107745450, 16202590638, 130043111849, 1085011337141, 9408577992091, 84501248359552, 786018565954838, 7550153439748394
Offset: 0

Views

Author

Gus Wiseman, Mar 03 2018

Keywords

Examples

			The a(3) = 6 ordered set partitions: (123), (1)(23), (2)(13), (12)(3), (3)(12), (1)(2)(3).
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Sum[Times@@Factorial/@Length/@GatherBy[sptn,Total],{sptn,sps[Range[n]]}],{n,8}]

Extensions

a(12)-a(15) from Alois P. Heinz, Mar 03 2018
a(16)-a(22) from Christian Sievers, Aug 30 2024

A035341 Sum of ordered factorizations over all prime signatures with n factors.

Original entry on oeis.org

1, 1, 5, 25, 173, 1297, 12225, 124997, 1492765, 19452389, 284145077, 4500039733, 78159312233, 1460072616929, 29459406350773, 634783708448137, 14613962109584749, 356957383060502945, 9241222160142506097, 252390723655315856437, 7260629936987794508973
Offset: 0

Views

Author

Keywords

Comments

Let f(n) = number of ordered factorizations of n (A074206(n)); a(n) = sum of f(k) over all terms k in A025487 that have n factors.
When the unordered spectrum A035310 is so ordered the sequences A000041 A000070 ...A035098 A000110 yield A000079 A001792 ... A005649 A000670 respectively.
Row sums of A095705. - David Wasserman, Feb 22 2008
From Ludovic Schwob, Sep 23 2023: (Start)
a(n) is the number of nonnegative integer matrices with sum of entries equal to n and no zero rows or columns, with weakly decreasing row sums. The a(3) = 25 matrices:
[1 1 1] [1 2] [2 1] [3]
.
[1 1] [1 1] [1 1 0] [1 0 1] [0 1 1] [2] [0 2] [2 0]
[1 0] [0 1] [0 0 1] [0 1 0] [1 0 0] [1] [1 0] [0 1]
.
[1] [1 0] [0 1] [1 0] [0 1] [1 0 0] [1 0 0] [0 1] [1 0]
[1] [1 0] [0 1] [0 1] [1 0] [0 1 0] [0 0 1] [1 0] [0 1]
[1] [0 1] [1 0] [1 0] [0 1] [0 0 1] [0 1 0] [1 0] [0 1]
.
[0 1 0] [0 1 0] [0 0 1] [0 0 1]
[1 0 0] [0 0 1] [1 0 0] [0 1 0]
[0 0 1] [1 0 0] [0 1 0] [1 0 0] (End)

Examples

			a(3) = 25 because there are 3 terms in A025487 with 3 factors, namely 8, 12, 30; and f(8)=4, f(12)=8, f(30)=13 and 4+8+13 = 25.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k)*binomial(i+k-1, k-1)^j, j=0..n/i)))
        end:
    a:= n->add(add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k), k=0..n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 29 2015
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, k]*If[j == 0, 1, Binomial[i + k - 1, k - 1]^j], {j, 0, n/i}]]];
    a[n_] := Sum[Sum[b[n, n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}], {k, 0, n}];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Oct 26 2015, after Alois P. Heinz, updated Dec 15 2020 *)
  • PARI
    R(n,k)=Vec(-1 + 1/prod(j=1, n, 1 - binomial(k+j-1,j)*x^j + O(x*x^n)))
    seq(n) = {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Sep 23 2023

Formula

a(n) ~ c * n! / log(2)^n, where c = 1/(2*log(2)) * Product_{k>=2} 1/(1-1/k!) = A247551 / (2*log(2)) = 1.8246323... . - Vaclav Kotesovec, Jan 21 2017

Extensions

More terms from Erich Friedman.
More terms from David Wasserman, Feb 22 2008

A096161 Row sums for triangle A096162.

Original entry on oeis.org

1, 3, 8, 30, 133, 768, 5221, 41302, 369170, 3677058, 40338310, 483134179, 6271796072, 87709287104, 1314511438945, 21017751750506, 357102350816602, 6424883282375340, 122025874117476166, 2439726373093186274
Offset: 1

Views

Author

Alford Arnold, Jun 18 2004

Keywords

Comments

Also, partitions such that a set of k equal terms are labeled 1 through k and can appear in any order. For example, the partition 3+2+2+2+1+1+1+1 of 13 appears 1!*3!*4!=144 times because there are 1! ways to order the one "3," 3! ways to order the three "2"s, ... - Christian G. Bower, Jan 17 2006

Examples

			1 1 2 1 3 6 1 4 6 12 24 ... A036038
1 1 1 1 3 1 1 4 3 6 1 ... A036040
1 1 2 1 1 6 1 1 2 2 24 ... A096162
so a(n) begins 1 3 8 30 ... A096161
		

Crossrefs

Programs

  • Mathematica
    nmax = 25; Rest[CoefficientList[Series[Product[Sum[k!*x^(j*k), {k, 0, nmax/j}], {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Aug 10 2019 *)
    m = 25; Rest[CoefficientList[Series[Product[-Gamma[0, -1/x^j] * Exp[-1/x^j], {j, 1, m}] / x^(m*(m + 1)/2), {x, 0, m}], x]] (* Vaclav Kotesovec, Dec 07 2020 *)
  • PARI
    { my(n=25); Vec(prod(k=1, n, O(x*x^n) + sum(r=0, n\k, x^(r*k)*r!))) }

Formula

G.f.: B(x)*B(x^2)*B(x^3)*... where B(x) is g.f. of A000142. - Christian G. Bower, Jan 17 2006
G.f.: Product_{k>0} Sum_{r>=0} x^(r*k)*r!. - Andrew Howroyd, Dec 22 2017
a(n) ~ n! * (1 + 1/n^2 + 2/n^3 + 7/n^4 + 28/n^5 + 121/n^6 + 587/n^7 + 3205/n^8 + 19201/n^9 + 123684/n^10 + ...), for coefficients see A293266. - Vaclav Kotesovec, Aug 10 2019

Extensions

More terms from Vladeta Jovovic, Jun 22 2004

A140585 Total number of all hierarchical orderings for all set partitions of n.

Original entry on oeis.org

1, 4, 20, 129, 1012, 9341, 99213, 1191392, 15958404, 235939211, 3817327362, 67103292438, 1273789853650, 25973844914959, 566329335460917, 13150556885604115, 324045146807055210, 8446201774570017379, 232198473069120178475, 6715304449424099384968
Offset: 1

Views

Author

Thomas Wieder, May 17 2008

Keywords

Examples

			We are considering all set partitions of the n-set {1,2,3,...,n}.
For each such set partition we examine all possible hierarchical arrangements of the subsets. A hierarchy is a distribution of elements (sets in the present case) onto levels.
A distribution onto levels is "hierarchical" if a level L+1 contains at most as many elements as level L. Thus for n=4 the arrangement {1,2}:{3}{4} is not allowed.
Let the colon ":" separate two consecutive levels L and L+1.
n=2 --> 1+3=4
{1,2} {1}{2}
{1}:{2}
{2}:{1}
-----------------------
n=3 --> 1+9+10=20
1*1 3*3=9 1*10
{1,2,3} {1,2}{3} {1}{2}{3}
{1,3}{2}
{2,3}{1} {1}{2}:{3}
{3}{1}:{2}
{1,2}:{3} {2}{3}:{1}
{1,3}:{2}
{2,3}:{1} {1}:{2}:{3}
{3}:{1}:{2}
{3}:{1,2} {2}:{3}:{1}
{2}:{1,3} {1}:{3}:{2}
{1}:{2,3} {2}:{1}:{3}
{3}:{2}:{1}
-----------------------
n=4 --> 1+12+9+60+47=129
1*1 4*3=12 3*3=9 6*10=60 1*47
{1,2,3,4} {1,2,3}{4} {1,2}{3,4} {1,2}{3}{4} {1}{2}{3}{4}
{1,2,4}{3} {1,3}{2,4} {1,2}{3}:{4}
{1,3,4}{2} {1,4}{2,3} {1,2}{4}:{3} {1}{2}:{3}:{4}
{2,3,4}{1} {1}{2}:{3,4} {1}{3}:{2}:{4}
{1,2}:{3,4} {1,2}:{3}:{4} {1}{4}:{2}:{3}
{1,2,3}:{4} {1,3}:{2,4} {1,2}:{4}:{3} {1}{2}:{4}:{3}
{1,2,4}:{3} {1,4}:{2,3} {1}:{2}:{3,4} {1}{3}:{4}:{2}
{1,3,4}:{2} {3,4}:{1,2} {2}:{1}:{3,4} {1}{4}:{3}:{2}
{2,3,4}:{1} {2,4}:{1,3} {1}:{3,4}:{2}
{2,3}:{1,4} {2}:{3,4}:{1} {2}{3}:{1}:{4}
{4}:{1,2,3} {2}{4}:{1}:{3}
{3}:{1,2,4} likewise for: {2}{3}:{4}:{1}
{2}:{1,3,4} {3,4}{1}{2} {2}{4}:{3}:{1}
{1}:{2,3,4} {2,4}{1}{3}
{2,3}{1}{4} {3}{4}:{1}:{2}
{1,4}{2}{3} {3}{4}:{2}:{1}
{1,3}{2}{4}
{1}{2}:{3}{4}
{1}{3}:{2}{4}
{1}{4}:{2}{3}
{2}{3}:{1}{4}
{2}{4}:{1}{3}
{3}{4}:{1}{2}
{2}{3}{4}:{1}
{1}{3}{4}:{2}
{1}{2}{4}:{3}
{1}{2}{3}:{4}
{1}:{2}:{3}:{4}
+23 permutations
		

Crossrefs

Programs

  • Maple
    A140585 := proc(n::integer) local k, Result; Result:=0: for k from 1 to n do Result:=Result+stirling2(n,k)*A005651(k); end do; lprint(Result); end proc;
    E.g.f.: series(1/mul(1-(exp(x)-1)^k/k!,k=1..10),x=0,10). # Thomas Wieder, Sep 04 2008
    # second Maple program:
    with(numtheory): b:= proc(k) option remember; add(d/d!^(k/d), d=divisors(k)) end: c:= proc(n) option remember; `if`(n=0, 1, add((n-1)!/ (n-k)!* b(k)* c(n-k), k=1..n)) end: a:= n-> add(Stirling2(n, k) *c(k), k=1..n): seq(a(n), n=1..30); # Alois P. Heinz, Oct 10 2008
  • Mathematica
    Table[n!*SeriesCoefficient[1/Product[(1-(E^x-1)^k/k!),{k,1,n}],{x,0,n}],{n,1,20}] (* Vaclav Kotesovec, Sep 03 2014 *)

Formula

Stirling transform of A005651 = Sum of multinomial coefficients: a(n) = Sum_{i=1..n} S2(n,k) A005651(k).
E.g.f.: 1/Product_{k>=1} (1 - (exp(x)-1)^k/k!). - Thomas Wieder, Sep 04 2008
a(n) ~ c * n! / (log(2))^n, where c = 1/(2*log(2)) * Product_{k>=2} 1/(1-1/k!) = A247551 / (2*log(2)) = 1.82463230250447246267598544320244231645906135137... . - Vaclav Kotesovec, Sep 04 2014, updated Jan 21 2017

Extensions

More terms from Alois P. Heinz, Oct 10 2008

A309951 Irregular triangular array, read by rows: T(n,k) is the sum of the products of multinomial coefficients (n_1 + n_2 + n_3 + ...)!/(n_1! * n_2! * n_3! * ...) taken k at a time, where (n_1, n_2, n_3, ...) runs over all integer partitions of n (n >= 0, 0 <= k <= A000041(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 2, 1, 10, 27, 18, 1, 47, 718, 4416, 10656, 6912, 1, 246, 20545, 751800, 12911500, 100380000, 304200000, 216000000, 1, 1602, 929171, 260888070, 39883405500, 3492052425000, 177328940580000, 5153150631600000, 82577533320000000, 669410956800000000, 2224399449600000000, 1632586752000000000, 1, 11481
Offset: 0

Views

Author

Petros Hadjicostas, Aug 25 2019

Keywords

Comments

This array was inspired by R. H. Hardin's recurrences for the columns of array A212855. Rows k=1 to k=5 are due to him, while the remaining rows were computed by Alois P. Heinz.
Row n has length A000041(n) + 1, i.e., one more than the number of partitions of n.
Let R(m,n) := R(m,n,t=0) = A212855(m,n) for m,n >= 1, where R(m,n,t) = LHS of Eq. (6) of Abramson and Promislow (1978, p. 248).
Let P_n be the set of all lists a = (a_1, a_2,..., a_n) of integers a_i >= 0, i = 1,..., n such that 1*a_1 + 2*a_2 + ... + n*a_n = n; i.e., P_n is the set all integer partitions of n. (We use a different notation for partitions than the one in the name of T(n,k).) Then |P_n| = A000041(n) for n >= 0.
We have R(m,n) = A212855(m,n) = Sum_{a in P_n} (-1)^(n - Sum_{j=1..n} a_j) * (a_1 + a_2 + ... + a_n)!/(a_1! * a_2! * ... * a_n!) * (n! / ((1!)^a_1 * (2!)^a_2 * ... * (n!)^a_n))^m.
The recurrence of R. H. Hardin for column n of array A212855 is Sum_{s = 0..|P_n|} (-1)^s * T(n,s) * R(m-s,n) = 0 for n >= 1 and m >= |P_n| + 1.
The above recurrence is correct for all n >= 1, but it is not always a minimal one. For example, it seems to be the minimal one for n = 1,...,6, but not for n = 7 (see A212854). It seems to be minimal whenever every two different partitions of n give different multinomial coefficients.
For n = 7, the partitions (a_1, a_2, a_3, a_4, a_5, a_6, a_7) = (0, 2, 1, 0, 0, 0, 0) (i.e., 2 + 2 + 3) and (a_1, a_2, a_3, a_4, a_5, a_6, a_7) = (3, 0, 0, 1, 0, 0, 0) (i.e., 1 + 1 + 1 + 4) give the same multinomial coefficient: 210 = 7!/(2!2!3!) = 7!/(1!1!1!4!). Hence, to find the minimal recurrence for n = 7, we count 210 only once in the set of multinomial coefficients: 1, 7, 21, 35, 42, 105, 140, 210, 420, 630, 840, 1260, 2520, 5040. Then the absolute value of the coefficient of a(n-1) in the minimal recurrence is the sum of these multinomial coefficients (i.e., 11271); the absolute value of the coefficient of a(n-2) in the minimal recurrence is the sum of products of every two of them (i.e., 46169368), and so on.
Looking at the multinomial coefficients of the integer partitions of n = 8, 9, 10 on pp. 831-832 of Abramowitz and Stegun (1964), we see that, even in these cases, the above recurrence is not the minimal one. The number of distinct multinomial coefficients among the integer partitions of n is given by A070289.

Examples

			Triangle begins as follows:
  [n=0]: 1,   1;
  [n=1]: 1,   1;
  [n=2]: 1,   3,     2;
  [n=3]: 1,  10,    27,     18;
  [n=4]: 1,  47,   718,   4416,    10656,      6912;
  [n=5]: 1, 246, 20545, 751800, 12911500, 100380000, 304200000, 216000000;
  ...
For example, when n = 3, the integer partitions of 3 are 3, 1+2, 1+1+1, and the corresponding multinomial coefficients are 3!/3! = 1, 3!/(1!2!) = 3, and 3!/(1!1!1!) = 6. Then T(n=3, k=0) = 1, T(n=3, k=1) = 1 + 3 + 6 = 10, T(n=3, k=2) = 1*3 + 1*6 + 3*6 = 27, and T(n=3, k=3) = 1*3*6 = 18.
Since |P_3| = A000041(3) = 3, the recurrence of _R. H. Hardin_ for column n = 3 of array A212855 is T(3,0)*R(m,3) - T(3,1)*R(m-1,3) + T(3,2)*R(m-2,3) - T(3,3)*R(m-3,3) = 0; i.e., R(m,3) - 10*R(m-1,3) + 27*R(m-2,3) - 18*R(m-3,3) = 0 for m >= 4. We have the initial conditions R(m=1,3) = 1, R(m=2,3) = 19, and R(m=3,3) = 163. Thus, R(m,3) = 6^m - 2*3^m + 1 = A212850(m) for m >= 1. See the documentation of array A212855.
		

Crossrefs

Rightmost terms in rows give A309972.

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0 or i=1, [n!], [map(x->
          binomial(n, i)*x, g(n-i, min(n-i, i)))[], g(n, i-1)[]])
        end:
    b:= proc(n, m) option remember; `if`(n=0, 1,
          expand(b(n-1, m)*(g(m$2)[n]*x+1)))
        end:
    T:= n->(p->seq(coeff(p, x, i), i=0..degree(p)))(b(nops(g(n$2)), n)):
    seq(T(n), n=0..7);  # Alois P. Heinz, Aug 25 2019
  • Mathematica
    g[n_, i_] := g[n, i] = If[n==0 || i==1, {n!}, Join[Binomial[n, i]*#& /@ g[n - i, Min[n - i, i]], g[n, i - 1]]];
    b[n_, m_] := b[n, m] = If[n==0, 1, Expand[b[n-1, m]*(g[m, m][[n]]*x+1)]];
    T[n_] := CoefficientList[b[Length[g[n, n]], n], x];
    T /@ Range[0, 7] // Flatten (* Jean-François Alcover, Feb 18 2021, after Alois P. Heinz *)

Formula

Sum_{k=0..A000041(n)} (-1)^k * T(n,k) = 0.

A321895 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of p(v) in M(u), where H is Heinz number, M is augmented monomial symmetric functions, and p is power sum symmetric functions.

Original entry on oeis.org

1, 1, 1, 0, -1, 1, 1, 0, 0, -1, 1, 0, 1, 0, 0, 0, 0, 2, -3, 1, -1, 1, 0, 0, 0, -1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, -1, -2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, -6, 3, 8, -6, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2018

Keywords

Comments

Row n has length A000041(A056239(n)).
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
The augmented monomial symmetric functions are given by M(y) = c(y) * m(y) where c(y) = Product_i (y)_i! where (y)_i is the number of i's in y and m is monomial symmetric functions.

Examples

			Triangle begins:
   1
   1
   1   0
  -1   1
   1   0   0
  -1   1   0
   1   0   0   0   0
   2  -3   1
  -1   1   0   0   0
  -1   0   1   0   0
   1   0   0   0   0   0   0
   2  -1  -2   1   0
   1   0   0   0   0   0   0   0   0   0   0
  -1   1   0   0   0   0   0
  -1   0   1   0   0   0   0
  -6   3   8  -6   1
   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0
   2  -1  -2   1   0   0   0
For example, row 12 gives: M(211) = 2p(4) - p(22) - 2p(31) + p(211).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Sum[Product[(-1)^(Length[t]-1)*(Length[t]-1)!,{t,s}],{s,Select[sps[Range[PrimeOmega[n]]]/.Table[i->If[n==1,{},primeMS[n]][[i]],{i,PrimeOmega[n]}],Times@@Prime/@Total/@#==m&]}],{n,18},{m,Sort[Times@@Prime/@#&/@IntegerPartitions[Total[primeMS[n]]]]}]

A183240 Sums of the squares of multinomial coefficients.

Original entry on oeis.org

1, 1, 5, 46, 773, 19426, 708062, 34740805, 2230260741, 180713279386, 18085215373130, 2188499311357525, 315204533416762046, 53270712928769375885, 10441561861586014363349, 2349364090881443819316871, 601444438364480313663234821, 173817677082622796179263021770
Offset: 0

Views

Author

Paul D. Hanna, Jan 03 2011

Keywords

Comments

Equals sums of the squares of terms in rows of the triangle of multinomial coefficients (A036038).
Ignoring initial term, equals the logarithmic derivative of A183241; A183241 is conjectured to consist entirely of integers.
More generally, let {M(n,k), n>=0} be the sums of the k-th powers of the multinomial coefficients where k>=0 (see table A183610), then:
Sum_{n>=0} M(n,k)*x^n/n!^k = Product_{n>=1} 1/(1-x^n/n!^k).

Examples

			G.f.: A(x) = 1 + x + 5*x^2/2!^2 + 46*x^3/3!^2 + 773*x^4/4!^2 +...
A(x) = 1/((1-x)*(1-x^2/2!^2)*(1-x^3/3!^2)*(1-x^4/4!^2)*...).
...
After the initial term a(0)=1, the next several terms are
a(1) = 1^2 = 1,
a(2) = 1^2 + 2^2 = 5,
a(3) = 1^2 + 3^2 + 6^2 = 46,
a(4) = 1^2 + 4^2 + 6^2 + 12^2 + 24^2 = 773,
a(5) = 1^2 + 5^2 + 10^2 + 20^2 + 30^2 + 60^2 + 120^2 = 19426,
and continue with the sums of squares of the terms in triangle A036038.
		

Crossrefs

Cf. A183610 (table of sums of powers of multinomial coefficients).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n-i, min(n-i, i))/i!^2+b(n, i-1))
        end:
    a:= n-> n!^2*b(n$2):
    seq(a(n), n=0..21);  # Alois P. Heinz, Sep 11 2019
  • Mathematica
    t=Table[Apply[Multinomial, Reverse[Sort[IntegerPartitions[i], Length[#1] > Length[#2] &]], {1}], {i, 30}]^2; Plus@@@t (* From Tony D. Noe *)
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1,
         b[n - i, Min[n - i, i]]/i!^2 + b[n, i - 1]];
    a[n_] := n!^2 b[n, n];
    a /@ Range[0, 21] (* Jean-François Alcover, Jun 04 2021, after Alois P. Heinz *)
  • PARI
    {a(n)=n!^2*polcoeff(1/prod(k=1,n,1-x^k/k!^2 +x*O(x^n)),n)}

Formula

G.f.: Sum_{n>=0} a(n)*x^n/n!^2 = Product_{n>=1} 1/(1-x^n/n!^2).
a(n) ~ c * (n!)^2, where c = Product_{k>=2} 1/(1-1/(k!)^2) = 1.37391178018464563291052028168404977854977270679629932106310942272080844... . - Vaclav Kotesovec, Feb 19 2015

Extensions

Terms following a(7) computed by T. D. Noe.

A319182 Irregular triangle where T(n,k) is the number of set partitions of {1,...,n} with block-sizes given by the integer partition with Heinz number A215366(n,k).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 3, 4, 6, 1, 1, 5, 10, 15, 10, 10, 1, 1, 15, 6, 10, 15, 15, 60, 45, 20, 15, 1, 1, 7, 21, 35, 105, 21, 105, 70, 105, 35, 210, 105, 35, 21, 1, 1, 8, 28, 35, 28, 56, 210, 168, 280, 280, 105, 420, 56, 840, 280, 420, 70, 560, 210, 56, 28, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2018

Keywords

Comments

A generalization of the triangle of Stirling numbers of the second kind, these are the coefficients appearing in the expansion of (x_1 + x_2 + x_3 + ...)^n in terms of augmented monomial symmetric functions. They also appear in Faa di Bruno's formula.

Examples

			Triangle begins:
  1
  1   1
  1   3   1
  1   3   4   6   1
  1   5  10  15  10  10   1
  1  15   6  10  15  15  60  45  20  15   1
The fourth row corresponds to the symmetric function identity (x_1 + x_2 + x_3 + ...)^4 = m(4) + 3 m(22) + 4 m(31) + 6 m(211) + m(1111).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn];
    Table[numSetPtnsOfType/@primeMS/@Sort[Times@@Prime/@#&/@IntegerPartitions[n]],{n,7}]

Formula

T(n,k) = A124794(A215366(n,k)).
Previous Showing 21-30 of 129 results. Next