A349561
E.g.f. satisfies: A(x)^A(x) = 1/(1 - x).
Original entry on oeis.org
1, 1, 0, 3, -8, 100, -834, 11438, -159928, 2762352, -52322160, 1124320032, -26509832040, 686751503568, -19306448087640, 586539826169880, -19131996548499264, 667157522614934016, -24762890955027112128, 974824890777753840576, -40566428716555791936000
Offset: 0
A(x) - 1 = x + 3*x^3/6 - 8*x^4/24 + ... = x + x^3/2 - x^4/3 + ... .
A(x)^A(x) = (1 + (A(x) - 1))^(1 + (A(x) - 1)) = Sum_{k>=0} A005727(k) * (A(x) - 1)^k / k! = 1 + 1 * (x + x^3/2 - x^4/3 + ... )/1! + 2 * (x + x^3/2 - x^4/3 + ... )^2/2! + 3 * (x + x^3/2 - x^4/3 + ... )^3/3! + ... = 1 + x + x^2 + x^3 + ... = 1/(1 - x).
-
Join[{1}, Table[(n-1)! - (-1)^n*Sum[(k-1)^(k-1)*StirlingS1[n, k], {k, 2, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Nov 22 2021 *)
-
a(n) = (-1)^(n-1)*sum(k=0, n, (k-1)^(k-1)*stirling(n, k, 1));
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(-sum(k=0, N, (k-1)^(k-1)*log(1-x)^k/k!)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(-log(1-x)/lambertw(-log(1-x))))
A176118
The n-th derivative of 1/x^x, evaluated at x=1.
Original entry on oeis.org
1, -1, 0, 3, -8, 10, 6, -42, -160, 2952, -27720, 253440, -2553528, 28562664, -349272000, 4618376280, -65615072640, 996952226880, -16133983959744, 277093189849536, -5033937521116800, 96451913892983040, -1943937259314019200, 41112770486238380160
Offset: 0
Jacob Parr (jacobparr1(AT)gmail.com), Apr 09 2010
E.g.f.: A(x) = 1 - x + 3*x^3/3! - 8*x^4/4! + 10*x^5/5! + 6*x^6/6! - 42*x^7/7! - 160*x^8/8! + 2952*x^9/9! - 27720*x^10/10! + 253440*x^11/11! + ...
The e.g.f. as a power series with reduced fractional coefficients begins
A(x) = 1 - x + 1/2x^3 - 1/3x^4 + 1/12x^5 + 1/120x^6 - 1/120x^7 - 1/252x^8 + 41/5040x^9 - 11/1440x^10 + 2/315x^11 - 106397/19958400x^12 + ...
-
1, seq(simplify(subs(x = 1, diff(x^(-x), `$`(x, n)))), n = 1 .. 22); # Emeric Deutsch, Apr 14 2010
a:= n-> n! *coeftayl(x^(-x), x=1, n):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 18 2012
-
NestList[Factor[D[#1, x]] &, 1/x^x, 22] /. (x -> 1) (* Robert G. Wilson v, Feb 03 2013 *)
A215522
n-th derivative of (x^x)^(x^x) at x=1.
Original entry on oeis.org
1, 1, 4, 18, 100, 650, 4908, 41090, 382520, 3863808, 42409440, 497972112, 6259762320, 83343114504, 1175904241848, 17442325040520, 272149555445760, 4438451554802880, 75714874759039104, 1343817666163911168, 24837691533530152320, 475811860099666527360
Offset: 0
-
a:= n-> n!*coeff(series(subs(x=x+1, (x^x)^(x^x) ), x, n+1), x, n):
seq(a(n), n=0..30);
-
m = 21; CoefficientList[(x+1)^((x+1)^(x+2)) + O[x]^(m+1), x]*Range[0, m]! (* Jean-François Alcover, Feb 07 2021 *)
A007120
Expansion of e.g.f. (1+x)^(1-x).
Original entry on oeis.org
1, 1, -2, -3, 16, -10, -114, 462, -496, -2952, 16920, -31680, -130008, 1707576, -14259504, 138375720, -1652311680, 22238105280, -321916019904, 4959460972224, -81123831838080, 1405677742882560, -25732182778727040, 496324987642915200, -10061966722201900416
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A179505
n-th derivative of x^(x^(x^(x^x))) at x=1.
Original entry on oeis.org
1, 1, 2, 9, 56, 480, 4374, 47894, 574888, 7829424, 116392080, 1901059512, 33564909432, 639562529424, 13047133134840, 283976169754440, 6563364026374464, 160538113862231808, 4141949353327046592, 112396373034208003008, 3199752121483607518080
Offset: 0
-
a:= n-> n!*coeff(series(subs(x=x+1, x^(x^(x^(x^x))) ), x, n+1), x, n):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 21 2012
-
f[n_] := D[x^(x^(x^(x^x))), {x, n}] /. x -> 1; Array[f, 16, 0]
Range[0, 20]! CoefficientList[ Series[(1 + x)^(1 + x)^(1 + x)^(1 + x)^(1 + x), {x, 0, 20}], x] (* Robert G. Wilson v, Feb 03 2013 *)
A277536
T(n,k) is the n-th derivative of the difference between the k-th tetration of x (power tower of order k) and its predecessor (or 0 if k=0) at x=1; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 0, 2, 0, 0, 3, 6, 0, 0, 8, 24, 24, 0, 0, 10, 170, 180, 120, 0, 0, 54, 900, 1980, 1440, 720, 0, 0, -42, 6566, 19530, 21840, 12600, 5040, 0, 0, 944, 44072, 224112, 305760, 248640, 120960, 40320, 0, 0, -5112, 365256, 2650536, 4818744, 4536000, 2993760, 1270080, 362880
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 0, 2;
0, 0, 3, 6;
0, 0, 8, 24, 24;
0, 0, 10, 170, 180, 120;
0, 0, 54, 900, 1980, 1440, 720;
0, 0, -42, 6566, 19530, 21840, 12600, 5040;
0, 0, 944, 44072, 224112, 305760, 248640, 120960, 40320;
...
-
f:= proc(n) option remember; `if`(n<0, 0,
`if`(n=0, 1, (x+1)^f(n-1)))
end:
T:= (n, k)-> n!*coeff(series(f(k)-f(k-1), x, n+1), x, n):
seq(seq(T(n, k), k=0..n), n=0..12);
# second Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
-add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)*
(-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1)))
end:
T:= (n, k)-> b(n, min(k, n))-`if`(k=0, 0, b(n, min(k-1, n))):
seq(seq(T(n, k), k=0..n), n=0..12);
-
f[n_] := f[n] = If[n < 0, 0, If[n == 0, 1, (x + 1)^f[n - 1]]];
T[n_, k_] := n!*SeriesCoefficient[f[k] - f[k - 1], { x, 0, n}];
Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten
(* second program: *)
b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0, 0, -Sum[Binomial[n - 1, j]*b[j, k]*Sum[Binomial[n - j, i]*(-1)^i*b[n - j - i, k - 1]*(i - 1)!, {i, 1, n - j}], {j, 0, n - 1}]]];
T[n_, k_] := (b[n, Min[k, n]] - If[k == 0, 0, b[n, Min[k - 1, n]]]);
Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 28 2018, from Maple *)
A354795
Triangle read by rows. The matrix inverse of A354794. Equivalently, the Bell transform of cfact(n) = -(n - 1)! if n > 0 and otherwise 1/(-n)!.
Original entry on oeis.org
1, 0, 1, 0, -1, 1, 0, -1, -3, 1, 0, -2, -1, -6, 1, 0, -6, 0, 5, -10, 1, 0, -24, 4, 15, 25, -15, 1, 0, -120, 28, 49, 35, 70, -21, 1, 0, -720, 188, 196, 49, 0, 154, -28, 1, 0, -5040, 1368, 944, 0, -231, -252, 294, -36, 1, 0, -40320, 11016, 5340, -820, -1365, -987, -1050, 510, -45, 1
Offset: 0
Triangle T(n, k) begins:
[0] [1]
[1] [0, 1]
[2] [0, -1, 1]
[3] [0, -1, -3, 1]
[4] [0, -2, -1, -6, 1]
[5] [0, -6, 0, 5, -10, 1]
[6] [0, -24, 4, 15, 25, -15, 1]
[7] [0, -120, 28, 49, 35, 70, -21, 1]
[8] [0, -720, 188, 196, 49, 0, 154, -28, 1]
[9] [0, -5040, 1368, 944, 0, -231, -252, 294, -36, 1]
- Louis Comtet, Advanced Combinatorics. Reidel, Dordrecht, 1974, p. 139-140.
Cf.
A354794 (matrix inverse),
A176118 (row sums),
A005727 (alternating row sums),
A045406 (column 2),
A347276 (column 3),
A345651 (column 4),
A298511 (central),
A008296 (variant),
A159333,
A264428,
A159075,
A006963,
A354796.
-
# The function BellMatrix is defined in A264428.
cfact := n -> ifelse(n = 0, 1, -(n - 1)!): BellMatrix(cfact, 10);
# Alternative:
t := proc(n, k) option remember; if k < 0 or n < 0 then 0 elif k = n then 1 else (n-1)*t(n-2, k-1) - (n-1-k)*t(n-1, k) + t(n-1, k-1) fi end:
T := (n, k) -> (-1)^(n-k)*t(n, k):
seq(print(seq(T(n, k), k = 0..n)), n = 0..9);
# Using the e.g.f.:
egf := (1 - x)^(t*(x - 1)):
ser := series(egf, x, 11): coeffx := n -> coeff(ser, x, n):
row := n -> seq(n!*coeff(coeffx(n), t, k), k=0..n):
seq(print(row(n)), n = 0..9);
-
cfact[n_] := If[n == 0, 1, -(n - 1)!];
R := Range[0, 10]; cf := Table[cfact[n], {n, R}];
Table[BellY[n, k, cf], {n, R}, {k, 0, n}] // Flatten
A215704
n-th derivative of ((x^x)^x)^x at x=1.
Original entry on oeis.org
1, 1, 6, 27, 156, 1110, 8322, 70098, 646272, 6333336, 66712680, 745731360, 8780828328, 108873486072, 1413807287760, 19157627737080, 270460073295360, 3965693824244160, 60266513065134528, 947644484349584448, 15389579447794454400, 257702782790624613120
Offset: 0
-
a:= n-> n!*coeff(series(subs(x=x+1, ((x^x)^x)^x ), x, n+1), x, n):
seq(a(n), n=0..25);
A005168
n-th derivative of x^x at 1, divided by n.
Original entry on oeis.org
1, 1, 1, 2, 2, 9, -6, 118, -568, 4716, -38160, 358126, -3662088, 41073096, -500013528, 6573808200, -92840971200, 1402148010528, -22554146644416, 385014881294496, -6952611764874240, 132427188835260480, -2653529921603890560, 55802195178451990896
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 1..400 (first 100 terms from T. D. Noe)
- R. K. Guy, Letter to N. J. A. Sloane, 1986
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712.
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- R. R. Patterson and G. Suri, The derivatives of x^x, date unknown. Preprint. [Annotated scanned copy]
-
a:= n-> (n-1)! *coeftayl(x^x, x=1, n):
seq(a(n), n=1..30); # Alois P. Heinz, Aug 18 2012
-
Rest[(NestList[ Factor[ D[ #1, x]] &, x^x, 23] /. (x -> 1))/Range[0, 23]] (* Robert G. Wilson v, Aug 10 2010 *)
-
from sympy import var, diff
x = var('x')
y = x**x
l = [[y:=diff(y),y.subs(x,1)/(n+1)][1] for n in range(10)]
print(l) # Nicholas Stefan Georgescu, Mar 02 2023
A211205
n-th derivative of x^(x^(x^(x^(x^x)))) at x=1.
Original entry on oeis.org
1, 1, 2, 9, 56, 480, 5094, 60494, 823528, 12365424, 206078880, 3745686912, 74083090872, 1579529362944, 36165466533000, 884104045301640, 22992315801392064, 633547543117707648, 18439576158792912192, 565162707747635408448, 18194047307015185486080
Offset: 0
Cf.
A005727,
A008405,
A176118,
A179230,
A179405,
A179505,
A215522,
A215524,
A215629,
A215643,
A215691,
A215704,
A215705,
A215706,
A215707,
A215708,
A215709,
A215710,
A215522,
A295106.
-
a:= n-> n!*coeff(series(subs(x=x+1, x^(x^(x^(x^(x^x))))), x, n+1), x, n):
seq(a(n), n=0..20);
-
NestList[ Factor[ D[#1, x]] &, x^x^x^x^x^x, 9] /. (x -> 1) (* or quicker *)
Range[0, 20]! CoefficientList[ Series[(1 + x)^(1 + x)^(1 + x)^(1 + x)^(1 + x)^(1 + x), {x, 0, 20}], x]
Comments