cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 63 results. Next

A318847 Number of tree-partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 12, 8, 28, 20, 32, 38, 112, 76, 116, 58, 352, 236, 1296, 176, 540, 288, 4448, 374, 612, 1144, 1812, 824, 16640, 1316, 59968, 612, 2336, 4528, 3208, 2924, 231168, 18320, 10632, 2168, 856960, 7132, 3334400, 3776, 11684, 74080, 12679424, 4919, 19192
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2018

Keywords

Comments

This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A tree-partition of m is either m itself or a sequence of tree-partitions, one of each part of a multiset partition of m with at least two parts.

Examples

			The a(6) = 6 tree-partitions of {1,1,2}:
  (112)
  ((1)(12))
  ((2)(11))
  ((1)(1)(2))
  ((1)((1)(2)))
  ((2)((1)(1)))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    allmsptrees[m_]:=Prepend[Join@@Table[Tuples[allmsptrees/@p],{p,Select[mps[m],Length[#]>1&]}],m];
    Table[Length[allmsptrees[nrmptn[n]]],{n,20}]

Formula

a(n) = A281118(A181821(n)).
a(prime(n)) = A289501(n).
a(2^n) = A005804(n).

Extensions

More terms from Jinyuan Wang, Jun 26 2020

A320172 Number of series-reduced balanced rooted identity trees whose leaves are integer partitions whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 2, 5, 9, 19, 38, 79, 163, 352, 750, 1633, 3558, 7783, 17020, 37338, 81920, 180399, 398600, 885101, 1975638, 4435741, 10013855, 22726109, 51807432, 118545425, 272024659, 625488420, 1440067761, 3317675261, 7644488052, 17610215982, 40547552277, 93298838972, 214516498359, 492844378878
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches, and balanced if all leaves are the same distance from the root. In an identity tree, all branches directly under any given node are different.

Examples

			The a(1) = 1 through a(5) = 19 rooted identity trees:
  (1)  (2)   (3)        (4)         (5)
       (11)  (21)       (22)        (32)
             (111)      (31)        (41)
             ((1)(2))   (211)       (221)
             ((1)(11))  (1111)      (311)
                        ((1)(3))    (2111)
                        ((1)(21))   (11111)
                        ((2)(11))   ((1)(4))
                        ((1)(111))  ((2)(3))
                                    ((1)(31))
                                    ((1)(22))
                                    ((2)(21))
                                    ((3)(11))
                                    ((1)(211))
                                    ((11)(21))
                                    ((2)(111))
                                    ((1)(1111))
                                    ((11)(111))
                                    ((1)(2)(11))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gig[m_]:=Prepend[Join@@Table[Union[Sort/@Select[Sort/@Tuples[gig/@mtn],UnsameQ@@#&]],{mtn,Select[mps[m],Length[#]>1&]}],m];
    Table[Sum[Length[Select[gig[y],SameQ@@Length/@Position[#,_Integer]&]],{y,Sort /@IntegerPartitions[n]}],{n,8}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    seq(n)={my(u=vector(n, n, numbpart(n)), v=vector(n)); while(u, v+=u; u=WeighT(u)-u); v} \\ Andrew Howroyd, Oct 25 2018

Extensions

Terms a(13) and beyond from Andrew Howroyd, Oct 25 2018

A320176 Number of series-reduced rooted trees whose leaves are strict integer partitions whose multiset union is a strict integer partition of n.

Original entry on oeis.org

1, 1, 3, 3, 5, 13, 15, 23, 33, 99, 109, 183, 251, 383, 1071, 1261, 2007, 2875, 4291, 5829, 16297, 18563, 30313, 42243, 63707, 85351, 125465, 297843, 356657, 556729, 783637, 1151803, 1564173, 2249885, 2988729, 6803577, 8026109, 12465665, 17124495, 25272841, 33657209
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2018

Keywords

Comments

Also the number of orderless tree-factorizations of Heinz numbers of strict integer partitions of n.
Also the number of phylogenetic trees on a set of distinct labels summing to n.

Examples

			The a(1) = 1 through a(7) = 15 rooted trees:
  (1)  (2)  (3)       (4)       (5)       (6)            (7)
            (21)      (31)      (32)      (42)           (43)
            ((1)(2))  ((1)(3))  (41)      (51)           (52)
                                ((1)(4))  (321)          (61)
                                ((2)(3))  ((1)(5))       (421)
                                          ((2)(4))       ((1)(6))
                                          ((1)(23))      ((2)(5))
                                          ((2)(13))      ((3)(4))
                                          ((3)(12))      ((1)(24))
                                          ((1)(2)(3))    ((2)(14))
                                          ((1)((2)(3)))  ((4)(12))
                                          ((2)((1)(3)))  ((1)(2)(4))
                                          ((3)((1)(2)))  ((1)((2)(4)))
                                                         ((2)((1)(4)))
                                                         ((4)((1)(2)))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    got[m_]:=Prepend[Join@@Table[Union[Sort/@Tuples[got/@p]],{p,Select[sps[m],Length[#]>1&]}],m];
    Table[Length[Join@@Table[got[m],{m,Select[IntegerPartitions[n],UnsameQ@@#&]}]],{n,20}]
  • PARI
    \\ here S(n) is first n terms of A005804.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    b(n,k)={my(v=vector(n)); for(n=1, n, v[n]=binomial(n+k-1, n) + EulerT(v[1..n])[n]); v}
    S(n)={my(M=Mat(vectorv(n, k, b(n,k)))); vector(n, k, sum(i=1, k, binomial(k, i)*(-1)^(k-i)*M[i,k]))}
    seq(n)={my(u=S((sqrtint(8*n+1)-1)\2)); [sum(i=1, poldegree(p), polcoef(p,i)*u[i]) | p <- Vec(prod(k=1, n, 1 + x^k*y + O(x*x^n))-1)]} \\ Andrew Howroyd, Oct 26 2018

Formula

a(n) = Sum_{k>0} A008289(n, k)*A005804(k). - Andrew Howroyd, Oct 26 2018

Extensions

Terms a(31) and beyond from Andrew Howroyd, Oct 26 2018

A330627 Number of non-isomorphic phylogenetic trees with n nodes.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 4, 5, 9, 14, 24, 39, 69, 116, 205, 357, 632, 1118, 2001, 3576, 6445, 11627, 21080, 38293, 69819, 127539, 233644, 428825, 788832, 1453589, 2683602, 4962167, 9190155, 17044522, 31655676, 58866237, 109600849, 204293047, 381212823, 712073862
Offset: 1

Views

Author

Gus Wiseman, Dec 28 2019

Keywords

Comments

A phylogenetic tree is a series-reduced rooted tree whose leaves are (usually disjoint) sets. Each branching as well as each element of each leaf contributes to the number of nodes.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(9) = 9 trees (commas and outer brackets elided):
  1  12  123  1234    12345    123456     1234567      12345678
              (1)(2)  (1)(23)  (1)(234)   (1)(2345)    (1)(23456)
                               (12)(34)   (12)(345)    (12)(3456)
                               (1)(2)(3)  (1)(2)(34)   (123)(456)
                                          (1)((2)(3))  (1)(2)(345)
                                                       (1)(23)(45)
                                                       (1)((2)(34))
                                                       (1)(2)(3)(4)
                                                       (12)((3)(4))
		

Crossrefs

Phylogenetic trees by number of labels are A005804, with unlabeled version A141268.
Balanced phylogenetic trees are A320154.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=[0]); for(n=1, n-1, v=concat(v, EulerT(v)[n] - v[n] + 1)); v} \\ Andrew Howroyd, Jan 02 2021

Formula

G.f.: A(x) satisfies A(x) = x*(1/(1-x) - A(x) - 2 + exp(Sum_{k>0} A(x^k)/k)). - Andrew Howroyd, Jan 02 2021

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 02 2021

A005805 Number of phylogenetic trees with n labels.

Original entry on oeis.org

1, 2, 5, 18, 107, 1008, 13113, 214238, 4182487, 94747196, 2440784645, 70431957258, 2249856084803, 78802876705608, 3002702793753489, 123649410977736950, 5471808106109912815, 258948617502187143188, 13049542794706527317597, 697673361673877090147490
Offset: 1

Views

Author

Keywords

Comments

Stirling transform of [ 1, 1, 1, 4, 26, 236, ... ] = A000311(n-1).
Series-reduced trees where each leaf is a nonempty subset of the set of n labels. [Christian G. Bower, Dec 15 1999]

References

  • Foulds, L. R.; Robinson, R. W. Enumeration of phylogenetic trees without points of degree two. Ars Combin. 17 (1984), A, 169-183. Math. Rev. 85f:05045
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    stirtr:= proc(p) proc(n) add(p(k) *Stirling2(n,k), k=0..n) end end: b:= proc(n) option remember; if n<=1 then n elif n=2 then 1 else (n+1) *b(n-1) +2*add(binomial(n-1, k) *b(k) *b(n-k), k=2..n-2) fi end:
    a:= stirtr(n->`if`(n<2,1, b(n-1))):
    seq(a(n), n=1..20);  # Alois P. Heinz, Sep 15 2008
  • Mathematica
    max = 18; a311 = CoefficientList[ InverseSeries[ Series[ 1 + 2x - E^x, {x, 0, max}], x], x]*Range[0, max]!; b[1] = 1; b[k_] := a311[[k]]; a[n_] := Sum[ b[k]*StirlingS2[n, k], {k, 1, n}]; Table[ a[n], {n, 1, max}] (* Jean-François Alcover, Feb 22 2012 *)

Formula

From Vaclav Kotesovec, Nov 16 2021: (Start)
E.g.f.: exp(2*x)/4 - (1 + LambertW(-exp(exp(x)/2 - 1)/2))^2.
a(n) ~ 2 * log(2)^(3/2) * n^(n-2) / (exp(n) * (log(2) + log(log(2)))^(n - 3/2)).
(End)

Extensions

More terms from Christian G. Bower, Dec 15 1999

A319118 Number of multimin tree-factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 6, 2, 2, 1, 8, 1, 2, 2, 24, 1, 6, 1, 8, 2, 2, 1, 42, 2, 2, 6, 8, 1, 8, 1, 112, 2, 2, 2, 38, 1, 2, 2, 42, 1, 8, 1, 8, 8, 2, 1, 244, 2, 6, 2, 8, 1, 24, 2, 42, 2, 2, 1, 58, 1, 2, 8, 568, 2, 8, 1, 8, 2, 8, 1, 268, 1, 2, 6, 8, 2, 8, 1, 244, 24
Offset: 1

Views

Author

Gus Wiseman, Sep 10 2018

Keywords

Comments

A multimin factorization of n is an ordered factorization of n into factors greater than 1 such that the sequence of minimal primes dividing each factor is weakly increasing. A multimin tree-factorization of n is either the number n itself or a sequence of multimin tree-factorizations, one of each factor in a multimin factorization of n with at least two factors.

Examples

			The a(12) = 8 multimin tree-factorizations:
  12,
  (2*6), (4*3), (6*2), (2*2*3),
  (2*(2*3)), ((2*2)*3), ((2*3)*2).
Or as series-reduced plane trees of multisets:
  112,
  (1,12), (11,2), (12,1), (1,1,2),
  (1,(1,2)), ((1,1),2), ((1,2),1).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    mmftrees[n_]:=Prepend[Join@@(Tuples[mmftrees/@#]&/@Select[Join@@Permutations/@Select[facs[n],Length[#]>1&],OrderedQ[FactorInteger[#][[1,1]]&/@#]&]),n];
    Table[Length[mmftrees[n]],{n,100}]

Formula

a(prime^n) = A118376(n).
a(product of n distinct primes) = A005804(n).

A330762 Triangle read by rows: T(n,k) is the number of series-reduced rooted trees whose leaves are multisets of colors with a total of n elements using exactly k colors.

Original entry on oeis.org

1, 2, 2, 4, 12, 8, 11, 67, 114, 58, 30, 376, 1230, 1496, 612, 96, 2174, 12038, 26156, 24570, 8374, 308, 12792, 113028, 389968, 630300, 481284, 140408, 1052, 76972, 1043355, 5363331, 13259870, 17008218, 10930150, 2785906, 3648, 471260, 9574934, 70524256, 250201560, 479284952, 508811114, 282141552, 63830764
Offset: 1

Views

Author

Andrew Howroyd, Dec 29 2019

Keywords

Examples

			Triangle begins:
     1;
     2,     2;
     4,    12,       8;
    11,    67,     114,      58;
    30,   376,    1230,    1496,      612;
    96,  2174,   12038,   26156,    24570,     8374;
   308, 12792,  113028,  389968,   630300,   481284,   140408;
  1052, 76972, 1043355, 5363331, 13259870, 17008218, 10930150, 2785906;
  ...
The T(3,2) = 12 trees are: (122), (112), ((1)(22)), ((1)(12)), ((2)(12)), ((2)(11)), ((1)(2)(2)), ((1)(1)(2)), ((1)((2)(2))), ((1)((1)(2))), ((2)((1)(2))), ((2)((1)(1))).
		

Crossrefs

Column 1 is A141268.
Main diagonal is A005804.
Row sums are A330469.
Cf. A330763 (leaves are sets).

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n, k)={my(v=[]); for(n=1, n, v=concat(v, EulerT(concat(v, [binomial(n+k-1, k-1)]))[n])); v}
    M(n)={my(v=vector(n, k, R(n, k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k, i)*v[i])))}
    { my(T=M(10)); for(n=1, #T~, print(T[n, 1..n])) }

A330763 Triangle read by rows: T(n,k) is the number of series-reduced rooted trees whose leaves are sets of colors with a total of n elements using exactly k colors.

Original entry on oeis.org

1, 1, 2, 2, 8, 8, 5, 41, 90, 58, 12, 204, 852, 1264, 612, 33, 1046, 7428, 19568, 21510, 8374, 90, 5456, 62682, 262912, 496270, 431040, 140408, 261, 29165, 523167, 3291021, 9520220, 13884960, 9947294, 2785906, 766, 158792, 4358182, 39636784, 165204730, 360421716, 426677440, 259854304, 63830764
Offset: 1

Views

Author

Andrew Howroyd, Dec 29 2019

Keywords

Examples

			Triangle begins:
    1;
    1,     2;
    2,     8,      8;
    5,    41,     90,      58;
   12,   204,    852,    1264,     612;
   33,  1046,   7428,   19568,   21510,     8374;
   90,  5456,  62682,  262912,  496270,   431040,  140408;
  261, 29165, 523167, 3291021, 9520220, 13884960, 9947294, 2785906;
  ...
The T(3,2) = 8 trees are: ((1)(12)), ((2)(12)), ((1)(2)(2)), ((1)(1)(2)), ((1)((2)(2))), ((1)((1)(2))), ((2)((1)(2))), ((2)((1)(1))).
		

Crossrefs

Column 1 is A000669.
Main diagonal is A005804.
Row sums are A330764.
Cf. A330762 (leaves are multisets).

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n, k)={my(v=[]); for(n=1, n, v=concat(v, EulerT(concat(v, [binomial(k,n)]))[n])); v}
    M(n)={my(v=vector(n, k, R(n, k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k, i)*v[i])))}
    {my(T=M(10)); for(n=1, #T~, print(T[n, 1..n]))} \\ Andrew Howroyd, Dec 29 2019

A320221 Irregular triangle where T(n,k) is the number of unlabeled series-reduced rooted trees with n leaves in which every leaf is at height k, (n>=1, min(1,n-1) <= k <= log_2(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 6, 1, 1, 7, 1, 1, 11, 4, 1, 13, 6, 1, 20, 16, 1, 23, 23, 1, 33, 46, 1, 40, 70, 1, 54, 127, 1, 1, 65, 189, 1, 1, 87, 320, 5, 1, 104, 476, 10, 1, 136, 771, 32, 1, 164, 1145, 63, 1, 209, 1795, 154, 1, 252, 2657, 304, 1, 319, 4091, 656
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2018

Keywords

Examples

			Triangle begins:
  1
  1
  1
  1  1
  1  1
  1  3
  1  3
  1  6  1
  1  7  1
  1 11  4
  1 13  6
  1 20 16
  1 23 23
  1 33 46
  1 40 70
The T(11,3) = 6 rooted trees:
   (((oo)(oo))((oo)(ooooo)))
   (((oo)(oo))((ooo)(oooo)))
   (((oo)(ooo))((oo)(oooo)))
   (((oo)(ooo))((ooo)(ooo)))
  (((oo)(oo))((oo)(oo)(ooo)))
  (((oo)(ooo))((oo)(oo)(oo)))
		

Crossrefs

Row sums are A120803. Second column is A083751. A regular version is A320179.

Programs

  • Mathematica
    qurt[n_]:=If[n==1,{{}},Join@@Table[Union[Sort/@Tuples[qurt/@ptn]],{ptn,Select[IntegerPartitions[n],Length[#]>1&]}]];
    DeleteCases[Table[Length[Select[qurt[n],SameQ[##,k]&@@Length/@Position[#,{}]&]],{n,10},{k,0,n-1}],0,{2}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    T(n)={my(u=vector(n), v=vector(n), h=1); u[1]=1; while(u, v+=u*h; h*=x; u=EulerT(u)-u); v[1]=x; [Vecrev(p/x) | p<-v]}
    { my(A=T(15)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Dec 09 2020

Extensions

Terms a(36) and beyond from Andrew Howroyd, Dec 09 2020
Name clarified by Andrew Howroyd, Dec 09 2020

A374384 a(n) = floor(Sum_{k=n^3..(n+1)^3} k^(1/3)).

Original entry on oeis.org

1, 12, 51, 134, 281, 508, 835, 1278, 1857, 2588, 3491, 4582, 5881, 7404, 9171, 11198, 13505, 16108, 19027, 22278, 25881, 29852, 34211, 38974, 44161, 49788, 55875, 62438, 69497, 77068, 85171, 93822, 103041, 112844, 123251, 134278, 145945, 158268, 171267, 184958, 199361
Offset: 0

Views

Author

Amrit Awasthi, Jul 07 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Floor[Sum[(n^3+k)^(1/3),{k,0,3n^2+3n+1}]],{n,0,40}] (* Stefano Spezia, Jul 07 2024 *)
  • PARI
    a(n) = 3*n^3+9*n^2\2+4*n+1; \\ Michel Marcus, Jul 09 2024

Formula

a(n) = floor(3*n^3+9*n^2/2+4*n+1).
a(2*n) = 24*n^3 + 18*n^2 + 8*n + 1.
a(2*n-1) = 24*n^3-18*n^2+8*n-2 for n > 0.
a(2*n) = A248575(2*n) + 4*n + 1.
a(2*n-1) = A248575(2*n-1) + 4*n - 2.
From Stefano Spezia, Jul 09 2024: (Start)
G.f.: (1 + 9*x + 17*x^2 + 7*x^3 + 2*x^3)/((1 - x)^4*(1 + x)).
E.g.f.: exp(x)*(1 + 11*x + 14*x^2 + 3*x^3). (End)
Previous Showing 51-60 of 63 results. Next