cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 71 results. Next

A364510 a(n) = binomial(4*n, n)^2.

Original entry on oeis.org

1, 16, 784, 48400, 3312400, 240374016, 18116083216, 1401950721600, 110634634890000, 8862957169158400, 718528370729238784, 58818762721626513424, 4853704694918904043024, 403242220875862752160000, 33694913171561404510440000, 2829611125043050701300998400
Offset: 0

Views

Author

Peter Bala, Jul 28 2023

Keywords

Crossrefs

Programs

  • Maple
    seq( binomial(4*n,n)^2, n = 0..15);
  • Mathematica
    A364510[n_]:=Binomial[4n,n]^2;Array[A364510,15,0] (* Paolo Xausa, Oct 05 2023 *)

Formula

a(n) = Sum_{i = -n..n} (-1)^i * binomial(2*n, n+i)^2 * binomial(4*n, 2*n+i).
Compare with Dixon's identity: Sum_{i = -n..n} (-1)^i * binomial(2*n, n+i)^3 = (3*n)!/n!^3.
a(n) = A005810(n)^2.
P-recursive: a(n) = 16 * ( (4*n - 1)*(4*n - 2)*(4*n - 3)/(3*n*(3*n - 1)*(3*n - 2)) )^2 * a(n-1) with a(0) = 1.
a(n) ~ c^n * 2/(3*Pi*n), where c = (2^16)/(3^6).
a(n) = [x^n] G(x)^(16*n), where the power series G(x) = 1 + x + 9*x^2 + 225*x^3 + 7525*x^4 + 295228*x^5 + 12787152*x^6 + 592477457*x^7 + 28827755219*x^8 + ... appears to have integer coefficients.
exp( Sum_{n > = 1} a(n)*x^n/n ) = F(x)^16, where the power series F(x) = 1 + x + 25*x^2 + 1033*x^3 + 53077*x^4 + 3081944*x^5 + 193543624*x^6 + 12835533333*x^7 + 886092805699*x^8 + ... appears to have integer coefficients.
The supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3^r)) hold for all primes p >= 5 and all positive integers n and r.
a(n) = [x^(3*n)] ( (1 - x)^(6*n)*Legendre_P(2*n, (1 + x)/(1 - x)) ). - Peter Bala, Aug 14 2023

A119304 Triangle read by rows: T(n,k) = binomial(4n-k,n-k), 0 <= k <= n.

Original entry on oeis.org

1, 4, 1, 28, 7, 1, 220, 55, 10, 1, 1820, 455, 91, 13, 1, 15504, 3876, 816, 136, 16, 1, 134596, 33649, 7315, 1330, 190, 19, 1, 1184040, 296010, 65780, 12650, 2024, 253, 22, 1, 10518300, 2629575, 593775, 118755, 20475, 2925, 325, 25, 1, 94143280, 23535820
Offset: 0

Views

Author

Paul Barry, May 13 2006

Keywords

Examples

			Triangle begins
       1;
       4,     1;
      28,     7,    1;
     220,    55,   10,    1;
    1820,   455,   91,   13,   1;
   15504,  3876,  816,  136,  16,  1;
  134596, 33649, 7315, 1330, 190, 19, 1;
		

Crossrefs

Rows sums are A052203. First column is A005810. Inverse of A119305.

Programs

  • Mathematica
    Flatten[Table[Binomial[4n-k,n-k],{n,0,9},{k,0,n}]] (* Indranil Ghosh, Feb 26 2017 *)
  • PARI
    tabl(nn) = {for (n=0,nn,for (k=0,n,print1(binomial(4*n-k,n-k),", ");); print(););} \\ Indranil Ghosh, Feb 26 2017
    
  • Python
    from sympy import binomial
    i=0
    for n in range(12):
        for k in range(n+1):
            print(str(i)+" "+str(binomial(4*n-k,n-k)))
            i+=1 # Indranil Ghosh, Feb 26 2017

Formula

Riordan array (1/(1-4f(x)),f(x)) where f(x)(1-f(x))^3 = x.
From Peter Bala, Jun 04 2024: (Start)
'Horizontal' recurrence equation: T(n, 0) = binomial(4*n,n) and for k >= 1, T(n, k) = Sum_{i = 1..n+1-k} i*(i+1)/2 * T(n-1, k-2+i).
T(n, k) = Sum_{j = 0..n} binomial(n+j-1, j)*binomial(3*n-k-j, 2*n). (End)

A169959 a(n) = binomial(10*n, n).

Original entry on oeis.org

1, 10, 190, 4060, 91390, 2118760, 50063860, 1198774720, 28987537150, 706252528630, 17310309456440, 426342151127100, 10542859559688820, 261594860525768000, 6509613950241656640, 162392216278033616560, 4059949873964357469950, 101696990867999141755140
Offset: 0

Views

Author

N. J. A. Sloane, Aug 07 2010

Keywords

Crossrefs

binomial(k*n,n): A000984 (k = 2), A005809 (k = 3), A005810 (k = 4), A001449 (k = 5), A004355 (k = 6), A004368 (k = 7), A004381 (k = 8), A169958 - A169961 (k = 9 thru 12).

Programs

Formula

a(n) = C(10*n-1, n-1)*C(100*n^2, 2)/(3*n*C(10*n+1, 3)), n > 0. - Gary Detlefs, Jan 02 2014
From Peter Bala, Feb 21 2022: (Start)
The o.g.f. A(x) is algebraic: (1 - A(x))*(1 + 9*A(x))^9 + (10^10)*x*A(x)^10 = 0.
Sum_{n >= 1} a(n)*( x*(9*x + 10)^9/(10^10*(1 + x)^10) )^n = x. (End)

A264773 Triangle T(n,k) = binomial(4*n - 3*k, 3*n - 2*k), 0 <= k <= n.

Original entry on oeis.org

1, 4, 1, 28, 5, 1, 220, 36, 6, 1, 1820, 286, 45, 7, 1, 15504, 2380, 364, 55, 8, 1, 134596, 20349, 3060, 455, 66, 9, 1, 1184040, 177100, 26334, 3876, 560, 78, 10, 1, 10518300, 1560780, 230230, 33649, 4845, 680, 91, 11, 1, 94143280, 13884156, 2035800, 296010, 42504, 5985, 816, 105, 12, 1
Offset: 0

Views

Author

Peter Bala, Nov 30 2015

Keywords

Comments

Riordan array (f(x),x*g(x)), where g(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + ... is the o.g.f. for A002293 and f(x) = g(x)/(4 - 3*g(x)) = 1 + 4*x + 28*x^2 + 220*x^3 + 1820*x^4 + ... is the o.g.f. for A005810.
More generally, if (R(n,k))n,k>=0 is a proper Riordan array and m is a nonnegative integer and a > b are integers then the array with (n,k)-th element R((m + 1)*n - a*k, m*n - b*k) is also a Riordan array (not necessarily proper). Here we take R as Pascal's triangle and m = a = 3 and b = 2. See A092392, A264772, A264774 and A113139 for further examples.

Examples

			Triangle begins
  n\k |       0      1     2    3   4   5   6   7
------+-----------------------------------------------
   0  |       1
   1  |       4      1
   2  |      28      5     1
   3  |     220     36     6    1
   4  |    1820    286    45    7   1
   5  |   15504   2380   364   55   8   1
   6  |  134596  20349  3060  455  66   9   1
   7  | 1184040 177100 26334 3876 560  78  10   1
...
		

Crossrefs

A005810 (column 0), A052203 (column 1), A257633 (column 2), A224274 (column 3), A004331 (column 4). Cf. A002293, A007318, A092392 (C(2n-k,n)), A119301 (C(3n-k,n-k)), A264772, A264774.

Programs

  • Magma
    /* As triangle: */ [[Binomial(4*n-3*k, 3*n-2*k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Dec 02 2015
  • Maple
    A264773:= proc(n,k) binomial(4*n - 3*k, 3*n - 2*k); end proc:
    seq(seq(A264773(n,k), k = 0..n), n = 0..10);
  • Mathematica
    A264773[n_,k_] := Binomial[4*n - 3*k, n - k];
    Table[A264773[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Feb 06 2024 *)

Formula

T(n,k) = binomial(4*n - 3*k, n - k).
O.g.f.: f(x)/(1 - t*x*g(x)), where f(x) = Sum_{n >= 0} binomial(4*n,n)*x^n and g(x) = Sum_{n >= 0} 1/(3*n + 1)*binomial(4*n,n)*x^n.

A357955 a(n) = 3*binomial(4*n,n) - 20*binomial(3*n,n) + 54*binomial(2*n,n).

Original entry on oeis.org

37, 60, 108, 60, -660, 60, 82404, 1411848, 17540460, 191318820, 1952058108, 19175376324, 184118073828, 1743153802320, 16359157606200, 152693295412560, 1420516291306860, 13190159377278324, 122358232382484420, 1134645084249344400, 10522118980232969340
Offset: 0

Views

Author

Peter Bala, Oct 22 2022

Keywords

Comments

Conjectures:
1) a(p) == a(1) (mod p^7) for all primes p >= 3 except p = 7.
2) a(p^r) == a(p^(r-1)) ( mod p^(3*r+5) ) for r >= 2 and all primes p >= 3.
These are stronger supercongruences than those satisfied separately by the sequences {binomial(2*n,n)} = A000984, {binomial(3*n,n)} = A005809 and {binomial(4*n,n)} = A005810.
Conjecture 1) was proved by Aidagulov and Alekseyev; see the remarks following Corollary 2. - Peter Bala, Oct 29 2022

Examples

			Examples of supercongruences:
a(11) - a(1) = 19175376324 - 60 = (2^3)*3*(11^7)*41 == 0 (mod 11^7).
a(5^2) - a(5) = 726506045044361132812560 - 60 = (2^2)*3*(5^11)*41*30241552444123 == 0 (mod 5^11).
		

Crossrefs

Programs

  • Maple
    seq(3*binomial(4*n,n) - 20*binomial(3*n,n) + 54*binomial(2*n,n), n = 0..20);
  • Mathematica
    A357955[n_] := 3*Binomial[4*n, n] - 20*Binomial[3*n, n] + 54*Binomial[2*n, n];
    Array[A357955, 25, 0] (* Paolo Xausa, Jul 17 2024 *)
  • Python
    from math import comb
    def A357955(n): return 54*comb(m:=n<<1,n)+3*comb(m<<1,n)-20*comb(m+n,n) # Chai Wah Wu, Oct 24 2022

Formula

a(n) = 3*A005810(n) - 20*A005809(n) + 54*A000984(n).
a(k*p^r) == a(k*p^(r-1)) ( mod p^(3*r) ) for positive integers k and r and for all primes p >= 5 (see Meštrović, Section 6, equation 39).
a(p) == a(1) (mod p^6) for all primes p >= 7 (apply Helou and Terjanian, Section 3, Proposition 2).
From Stefano Spezia, Jul 17 2024: (Start)
G.f.: 54/sqrt(1-4*x) - 40*cos(arccos(1-27*x/2)/6)/sqrt(4-27*x) + 3*hypergeom([1/4, 1/2, 3/4], [1/3, 2/3], 4^4*x/3^3).
E.g.f.: 54*exp(2*x)*BesselI(0, 2*x) - 20*hypergeom([1/3, 2/3], [1/2, 1], 27*x/4) + 3*hypergeom([1/4, 1/2, 3/4], [1/3, 2/3, 1], 4^4*x/3^3).
a(n) ~ exp(2*n*arctanh(229/283))*sqrt(6/(n*Pi)). (End)

A371814 a(n) = Sum_{k=0..n} (-1)^k * binomial(4*n-k-1,n-k).

Original entry on oeis.org

1, 2, 16, 128, 1068, 9142, 79612, 701864, 6244892, 55962920, 504375396, 4567003520, 41513817444, 378596616452, 3462411408136, 31742042431048, 291616814436124, 2684123914512280, 24746511514749280, 228491677484832896, 2112549277665243328
Offset: 0

Views

Author

Seiichi Manyama, Apr 06 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(4*n-k-1, n-k));

Formula

a(n) = [x^n] 1/((1+x) * (1-x)^(3*n)).
a(n) = binomial(4*n-1, n)*hypergeom([1, -n], [1-4*n], -1). - Stefano Spezia, Apr 07 2024
From Vaclav Kotesovec, Apr 07 2024: (Start)
Recurrence: 24*n*(3*n - 2)*(3*n - 1)*(415*n^3 - 1898*n^2 + 2871*n - 1436)*a(n) = (838715*n^6 - 5099533*n^5 + 12225995*n^4 - 14652035*n^3 + 9157250*n^2 - 2799192*n + 322560)*a(n-1) + 8*(2*n - 3)*(4*n - 7)*(4*n - 5)*(415*n^3 - 653*n^2 + 320*n - 48)*a(n-2).
a(n) ~ 2^(8*n + 1/2) / (5 * sqrt(Pi*n) * 3^(3*n - 1/2)). (End)
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(4*n,k). - Seiichi Manyama, Jul 30 2025
G.f.: g/((-1+2*g) * (4-3*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 13 2025
a(n) = Sum_{k=0..n} (-1)^k * 2^(n-k) * binomial(4*n,k) * binomial(4*n-k-1,n-k). - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g^3*(-4+6*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 17 2025

A378804 a(n) = n * 2^n * binomial(4*n, n).

Original entry on oeis.org

0, 8, 224, 5280, 116480, 2480640, 51684864, 1060899840, 21541478400, 433812234240, 8680043806720, 172774871965696, 3424347806171136, 67626404043161600, 1331466198928588800, 26145958720005734400, 512257621575157678080, 10016204637370583089152, 195501127311163895316480
Offset: 0

Views

Author

Amiram Eldar, Dec 07 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n * 2^n * Binomial[4*n, n]; Array[a, 20, 0]
  • PARI
    a(n) = n * 2^n * binomial(4*n, n);

Formula

a(n) = A036289(n) * A005810(n).
a(n) = 2^n * A378802(n).
a(n) == 0 (mod 8).
Sum_{n>=1} (-1)^n/a(n) = (log(2) - 6*log(3))/7 + Sum_{r: 2*r^3 + 12*r + 13 = 0} log(r+2)/(r+3) = -0.120716907732393305... (Borwein and Girgensohn, 2005, p. 32, eq. (43)).

A386918 a(n) = 2^n * binomial(4*n,n).

Original entry on oeis.org

1, 8, 112, 1760, 29120, 496128, 8614144, 151557120, 2692684800, 48201359360, 868004380672, 15706806542336, 285362317180928, 5202031080243200, 95104728494899200, 1743063914667048960, 32016101348447354880, 589188508080622534656, 10861173739509105295360
Offset: 0

Views

Author

Seiichi Manyama, Aug 08 2025

Keywords

Crossrefs

Programs

  • Magma
    [2^n * Binomial(4*n,n): n in [0..26]]; // Vincenzo Librandi, Aug 11 2025
  • Mathematica
    Table[2^n*Binomial[4*n,n],{n,0,30}] (* Vincenzo Librandi, Aug 11 2025 *)
  • PARI
    a(n) = 2^n*binomial(4*n, n);
    

Formula

a(n) = Sum_{k=0..n} binomial(4*n,k) * binomial(4*n-k,n-k).
a(n) = [x^n] (1+x)^(4*n)/(1-x)^(3*n+1).
a(n) = [x^n] 1/(1-2*x)^(3*n+1).
a(n) = [x^n] (1+2*x)^(4*n).

A387085 a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(2*n+1,k).

Original entry on oeis.org

1, 0, 4, 8, 36, 120, 456, 1680, 6340, 23960, 91224, 348656, 1337896, 5149872, 19877904, 76907808, 298176516, 1158168792, 4505865144, 17555689008, 68490100536, 267518448912, 1046041377264, 4094231982048, 16039426479336, 62887835652720, 246761907761776, 968943740083040
Offset: 0

Views

Author

Seiichi Manyama, Aug 16 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[(-3)^(n-k) * Binomial(2*n+1,k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 31 2025
  • Mathematica
    Table[Sum[(-3)^(n-k)*Binomial[2*n+1,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 31 2025 *)
  • PARI
    a(n) = sum(k=0, n, (-3)^(n-k)*binomial(2*n+1, k));
    

Formula

a(n) = [x^n] (1+x)^(2*n+1)/(1+3*x).
a(n) = [x^n] 1/((1-x)^(n+1) * (1+2*x)).
a(n) = Sum_{k=0..n} (-2)^k * 3^(n-k) * binomial(2*n+1,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} (-2)^k * binomial(2*n-k,n-k).
G.f.: 1/( 4*x - 1 + 2*sqrt(1 - 4*x) ).
G.f.: 1/(1 - 4*x*(-1+g)) where g = 1+x*g^2 is the g.f. of A000108.
G.f.: g^2/((-2+3*g) * (2-g)) where g = 1+x*g^2 is the g.f. of A000108.
G.f.: B(x)^2/(1 + 2*(B(x)-1)), where B(x) is the g.f. of A000984.
D-finite with recurrence 3*n*a(n) +2*(-4*n+3)*a(n-1) +8*(-2*n+1)*a(n-2)=0. - R. J. Mathar, Aug 19 2025

A026020 a(n) = binomial(4n, n) - binomial(4n, n - 3).

Original entry on oeis.org

1, 4, 28, 219, 1804, 15314, 132572, 1163565, 10316924, 92195488, 829016968, 7492106505, 67991427828, 619193535380, 5655829748520, 51794730347745, 475390078267356, 4371917301657488, 40276635724273936, 371630891401943020, 3433826368544377520, 31768260456301092090
Offset: 0

Views

Author

Keywords

Crossrefs

a(n) = T(4n, n), where T is the array defined in A026009.
Bisections are A026012 and A026016.

Programs

  • Magma
    [Binomial(4*n, n) - Binomial(4*n, n-3): n in [0..20]]; // G. C. Greubel, Mar 22 2021
    
  • Maple
    A026020:= n-> binomial(4*n,n) - binomial(4*n,n-3); seq(A026020(n), n=0..20); # G. C. Greubel, Mar 22 2021
  • Mathematica
    Table[Binomial[4n, n] - Binomial[4n, n - 3], {n, 0, 19}] (* Alonso del Arte, Jun 06 2019 *)
  • PARI
    a(n) = binomial(4*n, n) - binomial(4*n, n-3) \\ Felix Fröhlich, Jun 06 2019
    
  • Sage
    [binomial(4*n, n) - binomial(4*n, n-3) for n in (0..20)] # G. C. Greubel, Mar 22 2021

Formula

G.f.: (g - 2)*(1 - g + g^2)*g/(3*g - 4) where g = 1 + x*g^4 is the g.f. of A002293. - Mark van Hoeij, Nov 11 2011
a(n) = A005810(n) - A004333(n) for n > 2 - Felix Fröhlich, Jun 06 2019
a(n) ~ 13 * 2^(8*n+3/2) / (3^(3*n+7/2) * sqrt(Pi*n)). - Amiram Eldar, Sep 06 2025
Previous Showing 41-50 of 71 results. Next