cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 71 results. Next

A169960 a(n) = binomial(11*n,n).

Original entry on oeis.org

1, 11, 231, 5456, 135751, 3478761, 90858768, 2404808340, 64276915527, 1731030945644, 46897636623981, 1276749965026536, 34898565177533200, 957150015393611193, 26327386978706181060, 725971390105457325456, 20062118235172477959495, 555476984964439251664995
Offset: 0

Views

Author

N. J. A. Sloane, Aug 07 2010

Keywords

Crossrefs

binomial(k*n,n): A000984 (k = 2), A005809 (k = 3), A005810 (k = 4), A001449 (k = 5), A004355 (k = 6), A004368 (k = 7), A004381 (k = 8), A169958 - A169961 (k = 9 thru 12).

Programs

Formula

a(n) = C(11*n-1,n-1)*C(121*n^2,2)/(3*n*C(11*n+1,3)), n>0. - Gary Detlefs, Jan 02 2014
From Peter Bala, Feb 21 2022: (Start)
The o.g.f. A(x) is algebraic: (1 - A(x))*(1 + 10*A(x))^10 + (11^11)*x*A(x)^11 = 0.
Sum_{n >= 1} a(n)*( x*(10*x + 11)^10/(11^11*(1 + x)^11) )^n = x. (End)

A192205 a(n) = sum of absolute values of coefficients in (1-x-x^2+x^3)^n.

Original entry on oeis.org

1, 4, 12, 36, 116, 344, 1104, 3280, 10456, 31152, 98804, 295988, 935876, 2811540, 8870324, 26695724, 84060148, 253376840, 796635360, 2404558304, 7549431884, 22820942416, 71541295984, 216562743948, 677938097756, 2054922521644
Offset: 0

Views

Author

Paul D. Hanna, Jun 25 2011

Keywords

Comments

Conjecture: limit a(n)^(1/n) = 16*sqrt(3)/9 = 3.079201..., which is substantiated by the observation that the sums of the coefficients squared in (1-x-x^2+x^3)^n equals binomial(4n,n) (cf. A005810).

Examples

			The triangle A227964 of coefficients in (1+x-x^2-x^3)^n begins:
n=0: [1];
n=1: [1, -1, -1, 1];
n=2: [1, -2, -1, 4, -1, -2, 1];
n=3: [1, -3, 0, 8, -6, -6, 8, 0, -3, 1];
n=4: [1, -4, 2, 12, -17, -8, 28, -8, -17, 12, 2, -4, 1];
n=5: [1, -5, 5, 15, -35, -1, 65, -45, -45, 65, -1, -35, 15, 5, -5, 1];
n=6: [1, -6, 9, 16, -60, 24, 116, -144, -66, 220, -66, -144, 116, 24, -60, 16, 9, -6, 1]; ...
This sequence gives the sums of the absolute values of the coefficients for n>=0.
		

Crossrefs

Programs

  • Mathematica
    Table[Total[Abs[CoefficientList[Expand[(1-x-x^2+x^3)^n],x]]],{n,0,30}] (* Harvey P. Dale, Mar 03 2013 *)
  • PARI
    {a(n)=sum(k=0,3*n,abs(polcoeff((1-x-x^2+x^3)^n,k)))}
    for(n=0,30,print1(a(n),", "))

A268315 Decimal expansion of 256/27.

Original entry on oeis.org

9, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8
Offset: 1

Views

Author

Gheorghe Coserea, Feb 01 2016

Keywords

Examples

			9.481481481481481481481481481481...
		

Crossrefs

Programs

  • Magma
    [9] cat &cat[[4, 8, 1]^^45]; // Vincenzo Librandi, Feb 04 2016
  • Mathematica
    Join[{9}, PadRight[{}, 120, {4, 8, 1}]] (* Vincenzo Librandi, Feb 04 2016 *)
  • PARI
    1.0 * 256/27
    

Extensions

More digits from Jon E. Schoenfield, Mar 15 2018

A273628 a(n) = (7*n)!/((5*n)!*n!^2).

Original entry on oeis.org

1, 42, 6006, 1085280, 217567350, 46262007792, 10217700004512, 2317454130543552, 536022010184210550, 125863265857621191900, 29909151834298018538256, 7176685161839833601969280, 1735941935586019529116213920, 422752608090008019258722317800
Offset: 0

Views

Author

Peter Bala, Jul 15 2016

Keywords

Comments

This sequence occurs as the right-hand side of the binomial sum identity Sum_{k = 0..n} (-1)^k*binomial(n,k)*binomial(3*n + k,n)*binomial(4*n - k,n) = (-1)^m*a(m) for n = 2*m. For similar results see A001451, A006480 and A273629. Note the related sums:
Sum_{k = 0..n} (-1)^k*binomial(n,k)*binomial(3*n + k,n)*binomial(4*n + k,n) = (-1)^n*(2*n)!*(4*n)!/(n!^3*(3*n)!) = (-1)^n*binomial(2*n,n)*binomial(4*n,n) = (-1)^n*A000984(n)*A005810(n);
Sum_{k = 0..n} (-1)^k*binomial(n,k)*binomial(3*n - k,n)*binomial(4*n - k,n) = (3*n)!/n!^3 = A006480(n);
Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(3*n + k,n)*binomial(4*n + k,n) = Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(3*n - k,n)*binomial(4*n - k,n) = binomial(2*n,n) = A000984(n);
Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(3*n + k,n)*binomial(4*n - k,n) = Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(3*n - k,n)*binomial(4*n + k,n) = (-1)^n*binomial(2*n,n) = (-1)^n*A000984(n).

Crossrefs

Programs

  • Magma
    [Factorial(7*n) div (Factorial(5*n)*Factorial(n)^2): n in [0..15]]; // Vincenzo Librandi, Jul 16 2016
  • Maple
    seq((7*n)!/((5*n)!*n!^2), n = 0..20);
  • Mathematica
    Table[(7 n)!/((5 n)! n!^2), {n, 0, 13}] (* or *)
    Table[Binomial[7 n, n] Binomial[6 n, n], {n, 0, 13}] (* Michael De Vlieger, Jul 15 2016 *)

Formula

a(n) = (7*n)!/((5*n)!*n!^2) = binomial(7*n,2*n)*binomial(2*n,n).
a(n) = binomial(7*n,n)*binomial(6*n,n) = [x^n](1 + x)^(7*n) * [x^n](1 + x)^(6*n).
It appears that a(n) = [x^n] F(x)^(42*n), where F(x) = 1 + x + 30*x^2 + 2280*x^3 + 232715*x^4 + 27800465*x^5 + 3661895341*x^6 + ... has all integer coefficients. Cf. A273629 and A008979.
Recurrence: 5*n^2*(5*n - 1)*(5*n - 2)*(5*n - 3)*(5*n - 4)*a(n) = 7*(7*n - 1)*(7*n - 2)*(7*n - 3)*(7*n - 4)*(7*n - 5)*(7*n - 6)*a(n-1).
a(n) ~ 5^(-5*n-1/2)*7^(7*n+1/2)/(2*Pi*n). - Ilya Gutkovskiy, Jul 15 2016
a(n) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n, k) * A108625(6*n, k) (verified using the MulZeil procedure in Doron Zeilberger's MultiZeilberger package). - Peter Bala, Oct 15 2024

A273629 a(n) = (9*n)!/((7*n)!*n!^2).

Original entry on oeis.org

1, 72, 18360, 5920200, 2118223800, 803927196072, 316938365223480, 128313095514575400, 52976845635264939960, 22204947580777261872000, 9418997650746914743158360, 4034374193416822645489549632, 1741969558937890710303111545400
Offset: 0

Views

Author

Peter Bala, Jul 15 2016

Keywords

Comments

This sequence occurs as the right-hand side of the binomial sum identity Sum_{k = 0..n} (-1)^k*binomial(n,k)*binomial(4*n + k,n)*binomial(5*n - k,n) = (-1)^m*a(m) for n = 2*m. The sum vanishes for n odd. For similar results see A001451, A006480 and A273628.
Note the related sums:
Sum_{k = 0..n} (-1)^k*binomial(n,k)*binomial(4*n - k,n)*binomial(5*n - k,n) = binomial(2*n,n)*binomial(4*n,n) = A000984(n)*A005810(n);
Sum_{k = 0..2*n} (-1)^k*binomial(n,k)*binomial(4*n + k,n)*binomial(5*n + k,n) = Sum_{k = 0..2*n} (-1)^k*binomial(n,k)*binomial(4*n - k,n)*binomial(5*n - k,n) = binomial(2*n,n) = A000984(n).
Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(4*n + k,n)*binomial(5*n - k,n) = Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(4*n - k,n)*binomial(5*n + k,n) = (-1)^n*binomial(2*n,n) = (-1)^n*A000984(n).

Crossrefs

Programs

  • Magma
    [Factorial(9*n)/(Factorial(7*n)*Factorial(n)^2): n in [0..40]]; // Vincenzo Librandi, Jul 17 2016
  • Maple
    seq((9*n)!/((7*n)!*n!^2), n = 0..20);
  • Mathematica
    Table[Factorial[9 n] / (Factorial[7 n] Factorial[n]^2), {n, 0, 20}] (* Vincenzo Librandi, Jul 17 2016 *)

Formula

a(n) = (9*n)!/((7*n)!*n!^2) = binomial(9*n,2*n)* binomial(2*n,n).
a(n) = binomial(8*n,n)*binomial(9*n,n) = A004381(n)*A169958(n).
a(n) = [x^n](1 + x)^(8*n) * [x^n] (1 + x)^(9*n).
It appears that a(n) = [x^n] F(x)^(72*n), where F(x) = 1 + x + 56*x^2 + 7700*x^3 + 1422008*x^4 + 307144278*x^5 + 73118586828*x^6 + ... has all integer coefficients. Cf. A273628 and A008979.
Recurrence: 7*n^2*(7*n - 1)*(7*n - 2)*(7*n - 3)*(7*n - 4)*(7*n - 5)*(7*n - 6)*a(n) = 9*(9*n - 1)*(9*n - 2)*(9*n - 3)*(9*n - 4)*(9*n - 5)*(9*n - 6)*(9*n - 7)*(9*n - 8)*a(n-1).
a(n) ~ 3^(18*n+1)*7^(-7*n-1/2)/(2*Pi*n). - Ilya Gutkovskiy, Jul 15 2016
a(n) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n, k) * A108625(8*n, k) (verified using the MulZeil procedure in Doron Zeilberger's MultiZeilberger package). - Peter Bala, Oct 15 2024

A277170 Numerator of 3F2([3*n, -n, n+1],[2*n+1, n+1/2], 1).

Original entry on oeis.org

1, -1, 1, -1, 1, -3, 1, -1, 25, -1, 1, -49, 1, -1, 9, -3, 1, -363, 3025, -1, 169, -169, 1, -3, 1, -49, 289, -289, 7225, -361, 361, -361, 1, -1, 1, -529, 529, -529, 330625, -148225, 3025, -675, 9, -3, 7569, -2523, 142129, -409757907, 808201, -961, 8649, -2883, 1, -147
Offset: 0

Views

Author

Seiichi Manyama, Oct 19 2016

Keywords

Comments

Neil Calkin found the closed forms of 3F2([3*n, -n, n+1],[2*n+1, n+1/2], 1) in 2007.

References

  • Jonathan Borwein, David Bailey, Mathematics by Experiment, 2nd Edition: Plausible Reasoning in the 21st Century.

Crossrefs

Programs

  • Mathematica
    a[n_] := HypergeometricPFQ[{3n, -n, n+1}, {2n+1, n+1/2}, 1] // Numerator; Table[a[n], {n, 0, 53}] (* Jean-François Alcover, Oct 22 2016 *)

Formula

(s(n) =) 3F2([3*n, -n, n+1],[2*n+1, n+1/2], 1) = a(n) / A277520(n).
s(2k) = (A005810(k) / A066802(k))^2 = (((4k)! * (3k)!) / ((6k)! * k!))^2.
s(2k+1) = -1/3 * (A052203(k) / A187364(k))^2 = -1/3 * (((4k+1)! * (3k)!) / ((6k+1)! * k!))^2.

A277520 Denominator of 3F2([3*n, -n, n+1],[2*n+1, n+1/2], 1).

Original entry on oeis.org

1, 3, 25, 147, 1089, 20449, 48841, 312987, 55190041, 14322675, 100100025, 32065374675, 4546130625, 29873533563, 1859904071089, 4089135109921, 9399479144449, 22568149425822049, 1293753708921104809, 2835106739783283, 3289668853728536041
Offset: 0

Views

Author

Seiichi Manyama, Oct 19 2016

Keywords

Comments

Neil Calkin found the closed forms of 3F2([3*n, -n, n+1],[2*n+1, n+1/2], 1) in 2007.

References

  • Jonathan Borwein, David Bailey, Mathematics by Experiment, 2nd Edition: Plausible Reasoning in the 21st Century.

Crossrefs

Cf. A005810, A052203, A066802, A187364, A277170 (numerators).

Programs

  • Mathematica
    a[n_] := HypergeometricPFQ[{3n, -n, n+1}, {2n+1, n+1/2}, 1] // Denominator;
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Oct 22 2016 *)

Formula

(s(n) =) 3F2([3*n, -n, n+1],[2*n+1, n+1/2], 1) = A277170(n) / a(n).
s(2k) = (A005810(k) / A066802(k))^2 = (((4k)! * (3k)!) / ((6k)! * k!))^2.
s(2k+1) = -1/3 * (A052203(k) / A187364(k))^2 = -1/3 * (((4k+1)! * (3k)!) / ((6k+1)! * k!))^2.

A306290 a(n) = 1/(Integral_{x=0..1} (x^3 - x^4)^n dx).

Original entry on oeis.org

1, 20, 252, 2860, 30940, 325584, 3364900, 34337160, 347103900, 3483301360, 34754081648, 345120260940, 3413758188932, 33655718658800, 330869721936600, 3244839440755920, 31754250910172700, 310165459118369712, 3024542552887591120, 29449493278116018800, 286360607519186119920
Offset: 0

Views

Author

G. C. Greubel, Feb 03 2019

Keywords

Crossrefs

Programs

  • GAP
    List([0..30], n -> Factorial(4*n+1)/(Factorial(n)*Factorial(3*n)));
  • Magma
    [Factorial(4*n+1)/(Factorial(n)*Factorial(3*n)): n in [0..20]];
    
  • Mathematica
    Table[1/Beta[3*n+1, n+1], {n, 0, 20}]
  • PARI
    vector(20, n, n--; (4*n+1)!/(n!*(3*n)!))
    
  • Sage
    [1/beta(3*n+1,n+1) for n in range(20)]
    

Formula

a(n) = 1/Beta(3*n+1,n+1) = (4*n+1)!/(n! * (3*n)!).
a(n) = Sum_{k = 0..n} (-1)^(n+k) * (3*n + 2*k + 1)*binomial(3*n+k, k). This is the particular case m = 1 of the identity Sum_{k = 0..m*n} (-1)^k * (3*n + 2*k + 1) * binomial(3*n+k, k) = (-1)^(m*n) * (m*n + 1) * binomial((m+3)*n+1, 3*n). - Peter Bala, Nov 02 2024
From Amiram Eldar, Dec 09 2024: (Start)
a(n) = (4*n + 1) * binomial(4*n, n) = A016813(n) * A005810(n).
Formulas from Batir (2013):
Sum_{n>=0} 1/a(n) = f(c) = 1.05435362585114283076..., where f(x) = (x*(x^2-1)/(2*(2*x^2+1))) * log(abs((x+1)/(x-1))) + ((x-1)*(x^3+1)/(4*x*(2*x^2+1))) * sqrt(x/(x-2)) * (arctan(sqrt(x/(x-2))) + arctan(((3-x)/(x+1))*sqrt(x/(x-2)))) + ((x+1)*(x^3-1)/(4*x*(2*x^2+1))) * sqrt(x/(x+2)) * (arctan(((x+3)/(x-1))*sqrt(x/(x+2))) - arctan(sqrt(x/(x+2)))), and c = sqrt(1 + (16/sqrt(3))*cos(arctan(sqrt(229/27))/3)).
Sum_{n>=0} (-1)^n/a(n) = f(d) = 0.953648123517883351708..., where f(x) is defined above, and d = sqrt(1 + 16*(2/(3*(9+sqrt(849))))^(1/3) - 2*(2/3)^(2/3)*(9+sqrt(849))^(1/3)). (End)

A352276 a(0) = 1 and a(n) = Sum_{k = 0..3*n} n/(n + 2*k)*binomial(n + 2*k,k) for n >= 1.

Original entry on oeis.org

1, 9, 625, 58785, 5986993, 633580634, 68611922731, 7545931449401, 839183314181297, 94112350842056469, 10623982584664109750, 1205644823097085684641, 137414820511792364274091, 15718880489100999321142976, 1803621273322664188151352631, 207499462144488863314062180035
Offset: 0

Views

Author

Peter Bala, Mar 10 2022

Keywords

Comments

The following identity can be easily verified using Maple's SumTools:-Summation procedure: for n >= 1, A005810(n) = binomial(4*n,n) = Sum_{k = 0..3*n} n/(n + k)*binomial(n + k,k).
The binomial coefficients A005810(n) are known to satisfy the supercongruences A005810(n*p^r) == A005810(n*p^(r-1)) (mod p^(3*r)) for primes p >= 5 and positive integers n and r (see Meštrović, equation 39).
Calculation suggests that the present sequence satisfies the same congruences.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for primes p >= 5 and positive integers n and r.
More generally, for m a positive integer, define a sequence u_m by setting u_m(n) = Sum_{k = 0..m*n} n/(n + 2*k)*binomial(n + 2*k,k) for n >= 1.
Then we conjecture that each sequence u_m satisfies the above supercongruences. This is the case m = 3. See A333093 (case m = 1) and A352275 (m = 2).

Examples

			Examples of supercongruences:
a(11) - a(1) = 1205644823097085684641 - 9 = (2^3)*3*(11^3)*43*2887*5059* 60096637 == 0 (mod 11^3)
a(3*5) - a(3) = 207499462144488863314062180035 - 58785 = 2*(5^4)*1801* 4959701*18583938263214197 == 0 (mod 5^4)
		

Crossrefs

Programs

  • Mathematica
    nterms=25;Join[{1},Table[Sum[n/(n+2k)Binomial[n+2k,k],{k,0,3n}],{n,nterms-1}]] (* Paolo Xausa, Apr 10 2022 *)

Formula

a(n) ~ 7^(7*n + 3/2) / (37 * sqrt(Pi*n) * 2^(8*n + 3/2) * 3^(3*n + 1/2)). - Vaclav Kotesovec, Mar 15 2022

A352657 The number of lozenge tilings of a semiregular hexagon of side lengths n, n, 3*n, n, n and 3*n; equivalently, the number of plane partitions whose solid Young diagram fits inside an n X n X 3*n box.

Original entry on oeis.org

1, 4, 336, 572572, 19571505408, 13365232267026024, 182001937855822420050000, 49372092168218024268166702560000, 266640931683989945767062736068603511111680, 28657545169614835585678719963104037818950931553412096, 61277278161726929232430881966673334396569563602790616552072890176
Offset: 0

Views

Author

Peter Bala, Apr 22 2022

Keywords

Comments

A lozenge is a unit rhombus with internal angles of 60 and 120 degrees. A hexagon is semiregular if its internal angles are 120 degrees and opposite sides are of equal length. Let S(n) = Product_{k = 0..n-1} k! = A000178(n-1) for n >= 1. S(n) equals the superfactorial of n-1. Then for a, b and c nonnegative integers a semiregular hexagon with side-lengths a, b, c, a, b, c can be tiled by lozenges in exactly S(a+b+c)*S(a)*S(b)*S(c)/(S(a+b)*S(a+c)*S(b+c)) ways.
The superfactorial ratio (S(a)*S(b)*S(c)*S(a+b+c))/(S(a+b)*S(a+c)*S(b+c)) is an integer (see MacMahon, Chapter II, Section 429, p. 182, with x -> 1) and can be viewed as the superfactorial analog of the binomial coefficient (a + b)!/(a!*b!). Setting a = b = n, c = 3*n gives the entries for the present sequence, a superfactorial analog of A005810(n) = binomial(4*n,n).

Examples

			Examples of supercongruences:
p = 5, n = 1, r = 1:
a(5) - a(1)^5 = 13365232267026024 - 4^5 = (2^3)*(5^5)*534609290681 == 0 (mod 5^5).
p = 7, n = 1, r = 1:
a(7) - a(1)^7 = 49372092168218024268166702560000 - 4^7 = (2^8)*(7^4)*42153329 *1905537621534581059 == 0 (mod 7^4).
p = 3, n = 1, r = 2:
a(3^2) - a(3)^3 = 28657545169614835585678719963104037818950931553412096 - 572572^3 = (2^6)*(3^9)*7*13*36206433373771931*6904632711001213215426713099 == 0 (mod 3^9).
exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + 4*x + 176*x^2 + 191540*x^3 + 4893655248*x^4 + 2673066058559752*x^5 + 30333667002369040991520*x^6 + 7053156145366242954671905412736*x^7 + 33330116488711372656254906993570075436704*x^8 + 3184171685646079976603214029980784880572652377971904*x^9 + 6127727816185429609991005336553574169498938182021433716145181760*x^10 + ....
		

Crossrefs

Programs

  • Maple
    S := proc(n) local i; mul(i!, i = 0..n-1) end proc:
    a := n -> S(n)^2*S(3*n)*S(5*n)/(S(2*n)*S(4*n)^2):
    seq(a(n), n = 0..10);
  • Mathematica
    Table[BarnesG[n + 1]^2 * BarnesG[3*n + 1] * BarnesG[5*n + 1] / (BarnesG[2*n + 1] * BarnesG[4*n + 1]^2), {n, 0, 10}] (* Vaclav Kotesovec, May 16 2022 *)

Formula

a(n) = S(n)^2*S(3*n)*S(5*n)/(S(2*n)*S(4*n)^2), where S(n) = Product_{k = 0..n-1} k! with S(0) = 1.
a(n) = Product_{i = 1..3*n} (2*n+i-1)!*(i-1)!/(n+i-1)!^2.
a(n) = Product_{i = 1..n} (4*n+i-1)!*(i-1)!/((3*n+i-1)!*(n+i-1)!).
a(n) = Product_{i = 1..3*n} Product_{1 <= j, k <= n} (i + j + k - 1)/(i + j + k - 2).
a(n) = Product_{i = 1..n} Product_{j = 1..n} (3*n + i + j - 1)/(i + j - 1).
a(n) = Product_{i = 1..3*n} Product_{j = 1..n} (n + i + j - 1)/(i + j - 1).
For n >= 1, a(n) = det( (binomial(4*n,n+i-j)) ) for 1 <= i, j <= n. Apply Krattenhaller, Theorem 4 with a = n, b = 3*n and c = n.
a(n) ~ 1/A*(32/(15*n))^(1/12)*exp(B*n^2 + 1/12), where A = 1.2824271291... is the Glaisher-Kinkelin constant A074962 and B = (25/2)*log(5) + (9/2)*log(3) - 34*log(2).
Conjecture 1): the Gauss congruences a(n*p^r) == a(n*p^(r-1)) (mod p^r) hold for all primes p and positive integers n and r. If true, then the expansion of exp(Sum_{n >= 1} a(n)*x^n/n) has integer coefficients.
Conjecture 2): the supercongruences a(n*p^r) == a(n*p^(r-1))^p (mod p^(4*r)) hold for all primes p and positive integers n and r.
a(n) ~ exp(1/12) * 3^(9*n^2/2 - 1/12) * 5^(25*n^2/2 - 1/12) / (A * n^(1/12) * 2^(34*n^2 - 5/12)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, May 16 2022
From Peter Bala, Feb 15 2023: (Start)
a(n) = Product_{i = 1..n} Product_{j = 3*n..4*n-1} (i+j) / Product_{j = 0..n-1} (i+j).
a(n) = Product_{i = 1..3*n} Product_{j = n..2*n-1} (i+j) / Product_{j = 0..n-1} (i+j). (End)
Previous Showing 51-60 of 71 results. Next