cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 241 results. Next

A353851 Number of integer compositions of n with all equal run-sums.

Original entry on oeis.org

1, 1, 2, 2, 5, 2, 8, 2, 12, 5, 8, 2, 34, 2, 8, 8, 43, 2, 52, 2, 70, 8, 8, 2, 282, 5, 8, 18, 214, 2, 386, 2, 520, 8, 8, 8, 1957, 2, 8, 8, 2010, 2, 2978, 2, 3094, 94, 8, 2, 16764, 5, 340, 8, 12310, 2, 26514, 8, 27642, 8, 8, 2, 132938, 2, 8, 238, 107411, 8, 236258
Offset: 0

Views

Author

Gus Wiseman, May 31 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			The a(0) = 1 through a(8) = 12 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
           (11)  (111)  (22)    (11111)  (33)      (1111111)  (44)
                        (112)            (222)                (224)
                        (211)            (1113)               (422)
                        (1111)           (2112)               (2222)
                                         (3111)               (11114)
                                         (11211)              (41111)
                                         (111111)             (111122)
                                                              (112112)
                                                              (211211)
                                                              (221111)
                                                              (11111111)
For example:
  (1,1,2,1,1) has run-sums (2,2,2) so is counted under a(6).
  (4,1,1,1,1,2,2) has run-sums (4,4,4) so is counted under a(12).
  (3,3,2,2,2) has run-sums (6,6) so is counted under a(12).
		

Crossrefs

The version for parts or runs instead of run-sums is A000005.
The version for multiplicities instead of run-sums is A098504.
All parts are divisors of n, see A100346.
The version for partitions is A304442, ranked by A353833.
The version for run-lengths instead of run-sums is A329738, ptns A047966.
These compositions are ranked by A353848.
The distinct instead of equal version is A353850.
A003242 counts anti-run compositions, ranked by A333489.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A353847 represents the composition run-sum transformation.
For distinct instead of equal run-sums: A032020, A098859, A242882, A329739, A351013, A353837, ranked by A353838 (complement A353839), A353852, A354580, ranked by A354581.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n],SameQ@@Total/@Split[#]&]],{n,0,15}]
  • PARI
    a(n) = {if(n <=1, return(1)); my(d = divisors(n), res = 0); for(i = 1, #d, nd = numdiv(d[i]); res+=(nd*(nd-1)^(n/d[i]-1)) ); res } \\ David A. Corneth, Jun 02 2022

Formula

From David A. Corneth, Jun 02 2022 (Start)
a(p) = 2 for prime p.
a(p*q) = 8 for distinct primes p and q (Cf. A006881).
a(n) = Sum_{d|n} tau(d)*(tau(d)-1) ^ (n/d - 1) where tau = A000005. (End)

Extensions

More terms from David A. Corneth, Jun 02 2022

A043276 a(n) = maximal run length in base-2 representation of n.

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 3, 3, 2, 1, 2, 2, 2, 3, 4, 4, 3, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 3, 3, 4, 5, 5, 4, 3, 3, 2, 2, 2, 3, 3, 2, 1, 2, 2, 2, 3, 4, 4, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 6, 6, 5, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 4, 4, 3, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 3, 3, 4, 5, 5, 4, 3, 3, 2, 2, 2, 3, 3, 2
Offset: 1

Views

Author

Keywords

Comments

First occurrence of k is when n=2^k-1 and there is no last occurrence. - Robert G. Wilson v, Dec 14 2008
Sequences A000975, A037969, A037970, A037971 list numbers for which a(n)=1, a(n)=2, a(n)=3, a(n)=4. - M. F. Hasler, Jul 23 2013
a(n) = max(A101211(n,k): k = 1..A005811(n)). - Reinhard Zumkeller, Dec 16 2013

Crossrefs

Cf. A043277-A043290 for base-3 to base-16 analogs.

Programs

  • Haskell
    a043276 = maximum . a101211_row  -- Reinhard Zumkeller, Dec 16 2013
    
  • Maple
    A043276 := proc(n)
        local a,rl,i ;
        if n > 0 then
            rl := 1 ;
        else
            rl := 0 ;
        end if;
        a := rl ;
        dgs := convert(n,base,2) ;
        for i from 2 to nops(dgs) do
            if op(i,dgs) = op(i-1,dgs) then
                rl := rl+1 ;
                a := max(a,rl) ;
            else
                a := max(a,rl) ;
                rl := 1;
            end if;
        end do:
        a ;
    end proc:
    seq(A043276(n),n=1...80) ; # R. J. Mathar, Jun 04 2021
  • Mathematica
    f[n_] := Max @@ Length /@ Split@IntegerDigits[n, 2]; Array[f, 105] (* Robert G. Wilson v, Dec 14 2008 *)
  • PARI
    A043276(n,b=2)={my(m,c=1);while(n>0,n%b==(n\=b)%b && c++ && next;m=max(m,c);c=1);m} \\ M. F. Hasler, Jul 23 2013
    
  • PARI
    a(n)=my(r,t); while(n, t=valuation(n,2); if(t>r, r=t); n>>=t; t=valuation(n+1,2); if(t>r, r=t); n>>=t); r \\ Charles R Greathouse IV, Nov 02 2016
    
  • Python
    from itertools import groupby
    def A043276(n): return max(len(list(g)) for k, g in groupby(bin(n)[2:])) # Chai Wah Wu, Mar 09 2023

Extensions

More terms from Robert G. Wilson v, Dec 14 2008

A353846 Triangle read by rows where T(n,k) is the number of integer partitions of n with partition run-sum trajectory of length k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 1, 0, 0, 2, 2, 1, 0, 0, 3, 4, 0, 0, 0, 0, 4, 6, 1, 0, 0, 0, 0, 5, 9, 1, 0, 0, 0, 0, 0, 6, 11, 4, 1, 0, 0, 0, 0, 0, 8, 20, 2, 0, 0, 0, 0, 0, 0, 0, 10, 25, 7, 0, 0, 0, 0, 0, 0, 0, 0, 12, 37, 6, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, May 26 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). The run-sum trajectory is obtained by repeatedly taking run-sums (or condensations) until a strict partition is reached. For example, the trajectory of (2,1,1) is (2,1,1) -> (2,2) -> (4).
Also the number of integer partitions of n with Kimberling's depth statistic (see A237685, A237750) equal to k-1.

Examples

			Triangle begins:
   1
   0   1
   0   1   1
   0   2   1   0
   0   2   2   1   0
   0   3   4   0   0   0
   0   4   6   1   0   0   0
   0   5   9   1   0   0   0   0
   0   6  11   4   1   0   0   0   0
   0   8  20   2   0   0   0   0   0   0
   0  10  25   7   0   0   0   0   0   0   0
   0  12  37   6   1   0   0   0   0   0   0   0
   0  15  47  13   2   0   0   0   0   0   0   0   0
   0  18  67  15   1   0   0   0   0   0   0   0   0   0
   0  22  85  25   3   0   0   0   0   0   0   0   0   0   0
   0  27 122  26   1   0   0   0   0   0   0   0   0   0   0   0
For example, row n = 8 counts the following partitions (empty columns indicated by dots):
.  (8)    (44)        (422)     (4211)  .  .  .  .
   (53)   (332)       (32111)
   (62)   (611)       (41111)
   (71)   (2222)      (221111)
   (431)  (3221)
   (521)  (3311)
          (5111)
          (22211)
          (311111)
          (2111111)
          (11111111)
		

Crossrefs

Row-sums are A000041.
Column k = 1 is A000009.
Column k = 2 is A237685.
Column k = 3 is A237750.
The version for run-lengths instead of run-sums is A225485 or A325280.
This statistic (trajectory length) is ranked by A353841 and A326371.
The version for compositions is A353859, see also A353847-A353858.
A005811 counts runs in binary expansion.
A275870 counts collapsible partitions, ranked by A300273.
A304442 counts partitions with all equal run-sums, ranked by A353833.
A353832 represents the operation of taking run-sums of a partition
A353836 counts partitions by number of distinct run-sums.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353840-A353846 pertain to partition run-sum trajectory.
A353845 counts partitions whose run-sum trajectory ends in a singleton.

Programs

  • Mathematica
    rsn[y_]:=If[y=={},{},NestWhileList[Reverse[Sort[Total/@ Split[Sort[#]]]]&,y,!UnsameQ@@#&]];
    Table[Length[Select[IntegerPartitions[n],Length[rsn[#]]==k&]],{n,0,15},{k,0,n}]

A353849 Number of distinct positive run-sums of the n-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 3, 3, 1, 2, 3, 1, 2, 3, 2, 1, 2, 2, 2, 3, 3, 3, 2, 2, 3, 2, 3, 2, 1, 1, 3, 2, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3
Offset: 0

Views

Author

Gus Wiseman, May 30 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Composition 462903 in standard order is (1,1,4,7,1,2,1,1,1), with run-sums (2,4,7,1,2,3), of which a(462903) = 5 are distinct.
		

Crossrefs

Counting repeated runs also gives A124767.
Positions of first appearances are A246534.
For distinct runs instead of run-sums we have A351014 (firsts A351015).
A version for partitions is A353835, weak A353861.
Positions of 1's are A353848, counted by A353851.
The version for binary expansion is A353929 (firsts A353930).
The run-sums themselves are listed by A353932, with A353849 distinct terms.
For distinct run-lengths instead of run-sums we have A354579.
A005811 counts runs in binary expansion.
A066099 lists compositions in standard order.
A165413 counts distinct run-lengths in binary expansion.
A297770 counts distinct runs in binary expansion, firsts A350952.
A353847 represents the run-sum transformation for compositions.
A353853-A353859 pertain to composition run-sum trajectory.
Selected statistics of standard compositions:
- Length is A000120.
- Sum is A070939.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[Total/@Split[stc[n]]]],{n,0,100}]

A353853 Trajectory of the composition run-sum transformation (or condensation) of n, using standard composition numbers.

Original entry on oeis.org

0, 1, 2, 3, 2, 4, 5, 6, 7, 4, 8, 9, 10, 8, 11, 10, 8, 12, 13, 14, 10, 8, 15, 8, 16, 17, 18, 19, 18, 20, 21, 17, 22, 23, 20, 24, 25, 26, 24, 27, 26, 24, 28, 20, 29, 21, 17, 30, 18, 31, 16, 32, 33, 34, 35, 34, 36, 32, 37, 38, 39, 36, 32, 40, 41, 42, 32
Offset: 0

Views

Author

Gus Wiseman, Jun 01 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
The run-sum trajectory is obtained by repeatedly taking the run-sum transformation (A353847) until the rank of an anti-run is reached. For example, the trajectory 11 -> 10 -> 8 given in row 11 corresponds to the trajectory (2,1,1) -> (2,2) -> (4).

Examples

			Triangle begins:
   0
   1
   2
   3  2
   4
   5
   6
   7  4
   8
   9
  10  8
  11 10  8
  12
  13
  14 10  8
For example, the trajectory of 29 is 29 -> 21 -> 17, corresponding to the compositions (1,1,2,1) -> (2,2,1) -> (4,1).
		

Crossrefs

These sequences for partitions are A353840-A353846.
This is the iteration of A353847, with partition version A353832.
Row-lengths are A353854, counted by A353859.
Final terms are A353855.
Counting rows by weight of final term gives A353856.
Rows ending in a power of 2 are A353857, counted by A353858.
A003242 counts anti-run compositions, ranked by A333489, complement A261983.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A066099 lists compositions in standard order.
A318928 gives runs-resistance of binary expansion.
A329739 counts compositions with all distinct run-lengths.
A333627 ranks the run-lengths of standard compositions.
A351014 counts distinct runs in standard compositions, firsts A351015.
A353853-A353859 pertain to composition run-sum trajectory.
A353929 counts distinct runs in binary expansion, firsts A353930.
A353932 lists run-sums of standard compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[NestWhileList[stcinv[Total/@Split[stc[#]]]&,n,MatchQ[stc[#],{_,x_,x_,_}]&],{n,0,50}]

A034947 Jacobi (or Kronecker) symbol (-1/n).

Original entry on oeis.org

1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Also the regular paper-folding sequence.
For a proof that a(n) equals the paper-folding sequence, see Allouche and Sondow, arXiv v4. - Jean-Paul Allouche and Jonathan Sondow, May 19 2015
It appears that, replacing +1 with 0 and -1 with 1, we obtain A038189. Alternatively, replacing -1 with 0 we obtain (allowing for offset) A014577. - Jeremy Gardiner, Nov 08 2004
Partial sums = A005811 starting (1, 2, 1, 2, 3, 2, 1, 2, 3, ...). - Gary W. Adamson, Jul 23 2008
The congruence in {-1,1} of the odd part of n modulo 4 (Cf. A099545). - Peter Munn, Jul 09 2022

Examples

			G.f. = x + x^2 - x^3 + x^4 + x^5 - x^6 - x^7 + x^8 + x^9 + x^10 - x^11 - x^12 + ...
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, pp. 155, 182.
  • H. Cohen, Course in Computational Number Theory, p. 28.

Crossrefs

Moebius transform of A035184.
Cf. A091072 (indices of 1), A091067 (indices of -1), A371594 (indices of run starts).
The following are all essentially the same sequence: A014577, A014707, A014709, A014710, A034947, A038189, A082410. - N. J. A. Sloane, Jul 27 2012

Programs

  • Magma
    [KroneckerSymbol(-1,n): n in [1..100]]; // Vincenzo Librandi, Aug 16 2016
    
  • Maple
    with(numtheory): A034947 := n->jacobi(-1,n);
  • Mathematica
    Table[KroneckerSymbol[ -1, n], {n, 0, 100}] (* Corrected by Jean-François Alcover, Dec 04 2013 *)
  • PARI
    {a(n) = kronecker(-1, n)};
    
  • PARI
    for(n=1, 81, f=factor(n); print1((-1)^sum(s=1, omega(n), f[s, 2]*(Mod(f[s, 1], 4)==3)), ", ")); \\ Arkadiusz Wesolowski, Nov 05 2013
    
  • PARI
    a(n)=direuler(p=1,n,if(p==2,1/(1-kronecker(-4, p)*X)/(1-X),1/(1-kronecker(-4, p)*X))) /* Ralf Stephan, Mar 27 2015 */
    
  • PARI
    a(n) = if(n%2==0, a(n/2), (n+2)%4-2) \\ Peter Munn, Jul 09 2022
  • Python
    def A034947(n):
        s = bin(n)[2:]
        m = len(s)
        i = s[::-1].find('1')
        return 1-2*int(s[m-i-2]) if m-i-2 >= 0 else 1 # Chai Wah Wu, Apr 08 2021
    
  • Python
    def A034947(n): return -1 if n>>(-n&n).bit_length()&1 else 1 # Chai Wah Wu, Feb 26 2025
    

Formula

Multiplicative with a(2^e) = 1, a(p^e) = (-1)^(e*(p-1)/2) if p>2.
a(2*n) = a(n), a(4*n+1) = 1, a(4*n+3) = -1, a(-n) = -a(n). a(n) = 2*A014577(n-1)-1.
a(prime(n)) = A070750(n) for n > 1. - T. D. Noe, Nov 08 2004
This sequence can be constructed by starting with w = "empty string", and repeatedly applying the map w -> w 1 reverse(-w) [See Allouche and Shallit p. 182]. - N. J. A. Sloane, Jul 27 2012
a(n) = (-1)^A065339(n) = lambda(A097706(n)), where A065339(n) is number of primes of the form 4*m + 3 dividing n (counted with multiplicity) and lambda is Liouville's function, A008836. - Arkadiusz Wesolowski, Nov 05 2013 and Peter Munn, Jun 22 2022
Sum_{n>=1} a(n)/n = Pi/2, due to F. von Haeseler; more generally, Sum_{n>=1} a(n)/n^(2*d+1) = Pi^(2*d+1)*A000364(d)/(2^(2*d+2)-2)(2*d)! for d >= 0; see Allouche and Sondow, 2015. - Jean-Paul Allouche and Jonathan Sondow, Mar 20 2015
Dirichlet g.f.: beta(s)/(1-2^(-s)) = L(chi_2(4),s)/(1-2^(-s)). - Ralf Stephan, Mar 27 2015
a(n) = A209615(n) * (-1)^(v2(n)), where v2(n) = A007814(n) is the 2-adic valuation of n. - Jianing Song, Apr 24 2021
a(n) = 2 - A099545(n) == A000265(n) (mod 4). - Peter Munn, Jun 22 2022 and Jul 09 2022

A091067 Numbers whose odd part is of the form 4k+3.

Original entry on oeis.org

3, 6, 7, 11, 12, 14, 15, 19, 22, 23, 24, 27, 28, 30, 31, 35, 38, 39, 43, 44, 46, 47, 48, 51, 54, 55, 56, 59, 60, 62, 63, 67, 70, 71, 75, 76, 78, 79, 83, 86, 87, 88, 91, 92, 94, 95, 96, 99, 102, 103, 107, 108, 110, 111, 112, 115, 118, 119, 120, 123, 124, 126, 127, 131
Offset: 1

Views

Author

Ralf Stephan, Feb 22 2004

Keywords

Comments

Either of form 2*a(m) or 4k+3, k >= 0, 0 < m < n.
A000265(a(n)) is an element of A004767.
a(n) such that A038189(a(n)) = 1.
Numbers n such that Kronecker(-n, m) = Kronecker(m, n) for all m. - Michael Somos, Sep 22 2005
From Antti Karttunen, Feb 20-21 2015: (Start)
Gives all n for which A005811(n) - A005811(n-1) = -1, from which follows that a(n) = the least k such that A255070(k) = n.
Gives the positions of even terms in A003602. (End)
Indices of negative terms in A164677. - M. F. Hasler, Aug 06 2015
Indices of the 0's in A014577. - Gabriele Fici, Jun 02 2016
Also indices of -1 in A034947. - Jianing Song, Apr 24 2021
Conjecture: alternate definition of same sequence is that a(1)=3 and a(n) is the smallest number > a(n-1) so that no number that is the sum of at most 2 terms in this sequence is a power of 2. - J. Lowell, Jan 20 2024
The asymptotic density of this sequence is 1/2. - Amiram Eldar, Aug 31 2024

Crossrefs

Essentially one less than A060833.
Characteristic function: A038189.
Complement of A091072.
First differences are in A106836 (from its second term onward).
Sequence A246590 gives the even terms.
Gives the positions of records (after zero) for A255070 (equally, the position of the first n there).
Cf. A106837 (gives n such that both n and n+1 are terms of this sequence).
Cf. A098502 (gives n such that both n and n+2 are, but n+1 is not in this sequence).

Programs

  • Haskell
    import Data.List (elemIndices)
    a091067 n = a091067_list !! (n-1)
    a091067_list = map (+ 1) $ elemIndices 1 a014707_list
    -- Reinhard Zumkeller, Sep 28 2011
    (Scheme, with Antti Karttunen's IntSeq-library, two versions)
    (define A091067 (MATCHING-POS 1 1 (COMPOSE even? A003602)))
    (define A091067 (NONZERO-POS 1 0 A038189))
    ;; Antti Karttunen, Feb 20 2015
  • Mathematica
    Select[Range[150], Mod[# / 2^IntegerExponent[#, 2], 4] == 3 &] (* Amiram Eldar, Aug 31 2024 *)
  • PARI
    for(n=1,200,if(((n/2^valuation(n,2)-1)/2)%2,print1(n",")))
    
  • PARI
    {a(n) = local(m, c); if( n<1, 0, c=0; m=1; while( cMichael Somos, Sep 22 2005 */
    
  • PARI
    is_A091067(n)=bittest(n,valuation(n,2)+1) \\ M. F. Hasler, Aug 06 2015
    
  • PARI
    a(n) = my(t=1); n<<=1; forstep(i=logint(n,2),0,-1, if(bittest(n,i)==t, n++;t=!t)); n; \\ Kevin Ryde, Mar 21 2021
    

Formula

a(n) = A060833(n+1) - 1. [See N. Sato's Feb 12 2013 comment in A060833.]
Other identities. For all n >= 1 it holds that:
A014707(a(n) + 1) = 1. - Reinhard Zumkeller, Sep 28 2011
A055975(a(n)) < 0. - Reinhard Zumkeller, Apr 28 2012
From Antti Karttunen, Feb 20-21 2015: (Start)
a(n) = A246590(n)/2.
A255070(a(n)) = n, or equally, A236840(a(n)) = 2n.
a(n) = 1 + A255068(n-1). (End)

A382857 Number of ways to permute the prime indices of n so that the run-lengths are all equal.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 0, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 2, 4, 1, 2, 2, 0, 1, 6, 1, 1, 1, 2, 1, 0, 1, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 6, 1, 2, 1, 1, 2, 6, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 2, 6, 1, 0, 1, 2, 1, 6, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Apr 09 2025

Keywords

Comments

The first x with a(x) > 1 but A382771(x) > 0 is a(216) = 4, A382771(216) = 4.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The prime indices of 216 are {1,1,1,2,2,2} and we have permutations:
  (1,1,1,2,2,2)
  (1,2,1,2,1,2)
  (2,1,2,1,2,1)
  (2,2,2,1,1,1)
so a(216) = 4.
The prime indices of 25920 are {1,1,1,1,1,1,2,2,2,2,3} and we have permutations:
  (1,2,1,2,1,2,1,2,1,3,1)
  (1,2,1,2,1,2,1,3,1,2,1)
  (1,2,1,2,1,3,1,2,1,2,1)
  (1,2,1,3,1,2,1,2,1,2,1)
  (1,3,1,2,1,2,1,2,1,2,1)
so a(25920) = 5.
		

Crossrefs

The restriction to signature representatives (A181821) is A382858, distinct A382773.
The restriction to factorials is A335407, distinct A382774.
For distinct instead of equal run-lengths we have A382771.
For run-sums instead of run-lengths we have A382877, distinct A382876.
Positions of first appearances are A382878.
Positions of 0 are A382879.
Positions of terms > 1 are A383089.
Positions of 1 are A383112.
A003963 gives product of prime indices.
A005811 counts runs in binary expansion.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A056239 adds up prime indices, row sums of A112798.
A239455 counts Look-and-Say partitions, ranks A351294.
A304442 counts partitions with equal run-sums, ranks A353833.
A164707 lists numbers whose binary expansion has all equal run-lengths, distinct A328592.
A353744 ranks compositions with equal run-lengths, counted by A329738.

Programs

  • Mathematica
    Table[Length[Select[Permutations[Join@@ConstantArray@@@FactorInteger[n]], SameQ@@Length/@Split[#]&]],{n,0,100}]

A165413 a(n) is the number of distinct lengths of runs in the binary representation of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 1, 2, 2, 2, 3, 1, 3, 2, 3, 2, 2, 2, 1, 2, 2, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 2
Offset: 1

Views

Author

Leroy Quet, Sep 17 2009

Keywords

Comments

Least k whose value is n: 1, 4, 35, 536, 16775, 1060976, ..., = A165933. - Robert G. Wilson v, Sep 30 2009

Examples

			92 in binary is 1011100. There is a run of one 1, followed by a run of one 0, then a run of three 1's, then finally a run of two 0's. The run lengths are therefore (1,1,3,2). The distinct values of these run lengths are (1,3,2). Since there are 3 distinct values, then a(92) = 3.
		

Crossrefs

Cf. A140690 (locations of 1's), A165933 (locations of new highs).

Programs

  • Haskell
    import Data.List (group, nub)
    a165413 = length . nub . map length . group . a030308_row
    -- Reinhard Zumkeller, Mar 02 2013
    
  • Mathematica
    f[n_] := Length@ Union@ Map[ Length, Split@ IntegerDigits[n, 2]]; Array[f, 105] (* Robert G. Wilson v, Sep 30 2009 *)
  • PARI
    binruns(n) = {
      if (n == 0, return([1, 0]));
      my(bag = List(), v=0);
      while(n != 0,
            v = valuation(n,2); listput(bag, v); n >>= v; n++;
            v = valuation(n,2); listput(bag, v); n >>= v; n--);
      return(Vec(bag));
    };
    a(n) = #Set(select(k->k, binruns(n)));
    vector(105, i, a(i))  \\ Gheorghe Coserea, Sep 17 2015
    
  • Python
    from itertools import groupby
    def a(n): return len(set([len(list(g)) for k, g in groupby(bin(n)[2:])]))
    print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Jan 04 2021

Formula

a(n) = 1 for n in A140690. - Robert G. Wilson v, Sep 30 2009

Extensions

More terms from Robert G. Wilson v, Sep 30 2009

A351017 Number of binary words of length n with all distinct run-lengths.

Original entry on oeis.org

1, 2, 2, 6, 6, 10, 22, 26, 38, 54, 114, 130, 202, 266, 386, 702, 870, 1234, 1702, 2354, 3110, 5502, 6594, 9514, 12586, 17522, 22610, 31206, 48630, 60922, 83734, 111482, 149750, 196086, 261618, 336850, 514810, 631946, 862130, 1116654, 1502982, 1916530, 2555734, 3242546
Offset: 0

Views

Author

Gus Wiseman, Feb 07 2022

Keywords

Examples

			The a(0) = 1 through a(6) = 22 words:
  {}  0   00   000   0000   00000   000000
      1   11   001   0001   00001   000001
               011   0111   00011   000011
               100   1000   00111   000100
               110   1110   01111   000110
               111   1111   10000   001000
                            11000   001110
                            11100   001111
                            11110   011000
                            11111   011100
                                    011111
                                    100000
                                    100011
                                    100111
                                    110000
                                    110001
                                    110111
                                    111001
                                    111011
                                    111100
                                    111110
                                    111111
		

Crossrefs

Using binary expansions instead of words gives A032020, ranked by A044813.
The version for partitions is A098859.
The complement is counted by twice A261982.
The version for compositions is A329739, for runs A351013.
For runs instead of run-lengths we have A351016, twice A351018.
The version for patterns is A351292, for runs A351200.
A000120 counts binary weight.
A001037 counts binary Lyndon words, necklaces A000031, aperiodic A027375.
A005811 counts runs in binary expansion.
A011782 counts integer compositions.
A242882 counts compositions with distinct multiplicities.
A297770 counts distinct runs in binary expansion.
A325545 counts compositions with distinct differences.
A329767 counts binary words by runs-resistance.
A351014 counts distinct runs in standard compositions.
A351204 counts partitions where every permutation has all distinct runs.
A351290 ranks compositions with all distinct runs.

Programs

  • Mathematica
    Table[Length[Select[Tuples[{0,1},n],UnsameQ@@Length/@Split[#]&]],{n,0,10}]
  • Python
    from itertools import groupby, product
    def adrl(s):
        runlens = [len(list(g)) for k, g in groupby(s)]
        return len(runlens) == len(set(runlens))
    def a(n):
        if n == 0: return 1
        return 2*sum(adrl("1"+"".join(w)) for w in product("01", repeat=n-1))
    print([a(n) for n in range(20)]) # Michael S. Branicky, Feb 08 2022

Formula

a(n>0) = 2 * A032020(n).

Extensions

a(25)-a(32) from Michael S. Branicky, Feb 08 2022
More terms from David A. Corneth, Feb 08 2022 using data from A032020
Previous Showing 41-50 of 241 results. Next