cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A335671 Odd composite integers m such that A087130(m) == 5 (mod m).

Original entry on oeis.org

9, 27, 65, 121, 145, 377, 385, 533, 1035, 1189, 1305, 1885, 2233, 2465, 4081, 5089, 5993, 6409, 6721, 7107, 10877, 11281, 11285, 13281, 13369, 13741, 13833, 14705, 15457, 16721, 17545, 18901, 19601, 19951, 20329, 20705, 22881, 24769, 25345, 26599, 26937, 28741, 29161
Offset: 1

Views

Author

Ovidiu Bagdasar, Jun 17 2020

Keywords

Comments

If p is a prime, then A087130(p)==5 (mod p).
This sequence contains the odd composite integers for which the congruence holds.
The generalized Pell-Lucas sequence of integer parameters (a,b) defined by V(n+2)=a*V(n+1)-b*V(n) and V(0)=2, V(1)=a, satisfy the identity V(p)==a (mod p) whenever p is prime and b=-1,1.
For a=5, b=-1, V(n) recovers A087130(n).

Examples

			9 is the first odd composite integer for which A087130(9)=2744420==5 (mod 9).
		

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).

Crossrefs

Cf. A006497, A005845 (a=1), A330276 (a=2), A335669 (a=3), A335670 (a=4).

Programs

  • Maple
    M:= <<5|1>,<1|0>>:
    f:= proc(n) uses LinearAlgebra:-Modular;
    local A;
    A:= Mod(n,M,integer[8]);
    A:= MatrixPower(n,A,n);
    2*A[1,1] - 5*A[1,2] mod n;
    end proc:
    select(t -> f(t) = 5 and not isprime(t), [seq(i,i=3..10^5,2)]); # Robert Israel, Jun 19 2020
  • Mathematica
    Select[Range[3, 30000, 2], CompositeQ[#] && Divisible[LucasL[#, 5] - 5, #] &] (* Amiram Eldar, Jun 18 2020 *)

Extensions

More terms from Jinyuan Wang, Jun 17 2020

A217255 Strong Lucas pseudoprimes.

Original entry on oeis.org

5459, 5777, 10877, 16109, 18971, 22499, 24569, 25199, 40309, 58519, 75077, 97439, 100127, 113573, 115639, 130139, 155819, 158399, 161027, 162133, 176399, 176471, 189419, 192509, 197801, 224369, 230691, 231703, 243629, 253259, 268349, 288919, 313499, 324899
Offset: 1

Views

Author

Robert Baillie, Mar 16 2013

Keywords

Comments

Strong Lucas pseudoprimes with parameters (P, Q) defined by Selfridge's Method A.

Crossrefs

Cf. A217120 (Lucas pseudoprimes as defined by Baillie and Wagstaff).
Cf. A005845 (Lucas pseudoprimes as defined by Bruckman).
Cf. A217719 (extra strong Lucas pseudoprimes as defined by Baillie).

Programs

  • Mathematica
    (* see link *)

A337625 Odd composite integers m such that F(m)^2 == 1 (mod m) and L(m) == 1 (mod m), where F(m) and L(m) are the m-th Fibonacci and Lucas numbers, respectively.

Original entry on oeis.org

2737, 4181, 5777, 6721, 10877, 13201, 15251, 29281, 34561, 51841, 64079, 64681, 67861, 68251, 75077, 80189, 90061, 96049, 97921, 100127, 105281, 113573, 118441, 146611, 161027, 162133, 163081, 179697, 186961, 194833, 197209, 219781, 228241, 231703, 252601, 254321
Offset: 1

Views

Author

Ovidiu Bagdasar, Sep 19 2020

Keywords

Comments

Intersection of A005845 and A337231.
These numbers may be called weak generalized Fibonacci-Lucas-Bruckner pseudoprimes.
If p is a prime, then F(p)^2 == 1 (mod p) and L(p) == 1 (mod p).
This sequence contains the odd composite integers for which these congruences hold.
For a,b integers, the following sequences are defined:
generalized Lucas sequences by U(n+2)=a*U(n+1)-b*U(n) and U(0)=0, U(1)=1,
generalized Pell-Lucas sequences by V(n+2)=a*V(n+1)-b*V(n) and V(0)=2, V(1)=a.
These satisfy the identities U(p)^2 == 1 and V(p)==a (mod p) for p prime and b=1,-1.
These numbers may be called weak generalized Lucas-Bruckner pseudoprimes of parameters a and b.The current sequence is defined for a=1 and b=-1.
Examples: a(n) is also the number of Jones graphs on n nodes.

Crossrefs

Cf. A005845 and A337231.

Programs

  • Mathematica
    Select[Range[3, 20000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 1]*Fibonacci[#, 1] - 1, #] && Divisible[LucasL[#, 1] - 1, #] &]

Extensions

More terms from Amiram Eldar, Sep 19 2020

A094398 Numbers k that divide Lucas(k) + 1.

Original entry on oeis.org

1, 2, 4, 8, 15, 16, 32, 64, 128, 256, 323, 368, 512, 736, 1024, 1472, 2048, 2944, 4096, 4879, 5655, 5888, 6479, 7055, 8192, 8464, 9879, 10815, 11663, 11776, 12935, 16384, 16928, 18407, 19043, 23407, 23552, 31535, 32768, 33856, 34943, 35207, 35296
Offset: 1

Views

Author

Eric Rowland, May 01 2004

Keywords

Comments

The powers of 2 (A000079) are in the sequence. - Michel Lagneau, Feb 09 2015

Crossrefs

Programs

A213060 Lucas(n) mod n, Lucas(n)= A000032(n).

Original entry on oeis.org

0, 1, 1, 3, 1, 0, 1, 7, 4, 3, 1, 10, 1, 3, 14, 15, 1, 0, 1, 7, 11, 3, 1, 2, 11, 3, 22, 7, 1, 18, 1, 31, 4, 3, 4, 34, 1, 3, 17, 7, 1, 18, 1, 7, 41, 3, 1, 2, 29, 23, 4, 7, 1, 0, 44, 47, 4, 3, 1, 22, 1, 3, 41, 63, 11, 18, 1, 7, 50, 53, 1, 2, 1, 3, 64, 7, 73, 18
Offset: 1

Views

Author

Gary Detlefs, Jun 03 2012

Keywords

Comments

a(n) = 1 for all prime values of n. Composite values for which a(n) = 1 are listed in A005845.

Crossrefs

Cf. A002708 (Fibonacci(n) mod n).

Programs

  • Magma
    [Lucas(n) mod (n) : n in [1..120]]; // Vincenzo Librandi, Nov 19 2015
  • Maple
    with(combinat):f:=n-> fibonacci(n):L:=n->f(2*n)/f(n): seq(L(n) mod n, n= 1..75)
    # alternative
    A213060 := proc(n::integer)
        modp(A000032(n),n) ;
    end proc:
    seq(A213060(n),n=1..100) ; # R. J. Mathar, Oct 02 2019
  • Mathematica
    Table[Mod[LucasL[n], n], {n, 100}] (* T. D. Noe, Jun 06 2012 *)

A225876 Composite n which divide s(n)+1, where s is the linear recurrence sequence s(n) = -s(n-1) + s(n-2) - s(n-3) + s(n-5) with initial terms (5, -1, 3, -7, 11).

Original entry on oeis.org

4, 14791044, 143014853, 253149265, 490434564, 600606332, 993861182, 3279563483
Offset: 1

Views

Author

Matt McIrvin, May 23 2013

Keywords

Comments

The pseudoprimes derived from the fifth-order linear recurrence A225984(n) are analogous to the Perrin pseudoprimes A013998, and the Lucas pseudoprimes A005845.
For prime p, A225984(p) == p - 1 (mod p). The pseudoprimes are composite numbers satisfying the same relation. 4 = 2^2; 14791044 = 2^2 * 3 * 19 * 29 * 2237; 143014853 = 907 * 157679.
Like the Perrin test, the modular sequence is periodic so simple pre-tests can be performed. Numbers divisible by 2, 3, 4, 5, 9, and 25 have periods 31, 11, 62, 24, 33, and 120 respectively. - Dana Jacobsen, Aug 29 2016
a(9) > 1.4*10^11. - Dana Jacobsen, Aug 29 2016

Examples

			A225984(4) = 11, and 11 == 3 (mod 4). Since 4 is composite, it is a pseudoprime with respect to A225984.
		

Programs

  • PARI
    N=10^10;
    default(primelimit, N);
    M = [0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1; 1, 0, -1, 1, -1];
    a(n)=lift( trace( Mod(M, n)^n ) );
    ta(n)=lift( trace( Mod(M, n) ) );
    { for (n=2, N,
        if ( isprime(n), next() );
        if ( a(n)==ta(n), print1(n, ", "); );
    ); }
    /* Matt McIrvin, after Joerg Arndt's program for A013998, May 23 2013 */

Extensions

Terms 4 through 7 found by Richard Holmes, added by Matt McIrvin, May 27 2013
a(8) from Dana Jacobsen, Aug 29 2016

A164824 Lucas pseudoprimes whose reversal is prime.

Original entry on oeis.org

10877, 97921, 113573, 163081, 186961, 302101, 1106327, 1149851, 1317121, 1392169, 1533601, 1653601, 1690501, 3218801, 3338221, 3399527, 3967201, 7405201, 7640137, 7678321, 9264097, 9439201, 9532033, 9582145, 10237921
Offset: 1

Views

Author

Jonathan Vos Post, Aug 27 2009

Keywords

Examples

			a(1) = 10877 = 73 * 149 because that is the 8th Lucas pseudoprime, and its reversal 77801 is prime.
		

Crossrefs

Formula

A005845 INTERSECTION (A006567 UNION A007500). {n in A005845 such that A004086(n) is in A000040}. {n such that n | (L_n - 1), where n is composite and L_n = Lucas numbers A000032, and R(n) is prime}.

Extensions

More terms from R. J. Mathar, Sep 27 2009

A178375 The greatest common prime divisor of A000032(n)-1 and A001608(n), or 1 if no such divisor exists.

Original entry on oeis.org

2, 3, 2, 5, 1, 7, 2, 3, 1, 11, 1, 13, 1, 1, 2, 17, 1, 19, 1, 1, 2, 23, 1, 5, 1, 3, 1, 29, 1, 31, 2, 7, 1, 3, 1, 37, 1, 7, 1, 41, 1, 43, 2, 1, 2, 47, 1, 7, 2, 1, 3, 53, 1, 7, 1, 1, 2, 59, 1, 61, 1, 1, 2, 7, 1, 67, 3, 1, 1, 71, 1, 73, 2, 1, 1, 5, 1, 79, 1, 7, 1, 83, 1, 2, 2, 7, 2, 89, 1
Offset: 2

Views

Author

Vladimir Shevelev, May 26 2010

Keywords

Comments

If n is prime, then n divides c(n). If n is composite and divides c(n) it is a pseudoprime to both the Lucas (Bruckman) and Perrin tests, which is the intersection of A005845 and A013998.
Conjecture: Records of the sequence are consecutive primes.

Crossrefs

Extensions

More terms from R. J. Mathar, Aug 08 2010

A338078 Odd composite integers m such that A085447(m) == 6 (mod m).

Original entry on oeis.org

57, 185, 385, 481, 629, 721, 779, 1121, 1441, 1729, 2419, 2737, 5665, 6721, 7471, 8401, 9361, 10465, 10561, 11285, 11521, 11859, 12257, 13585, 14705, 15281, 16321, 16583, 18849, 24721, 25345, 25441, 25593, 30745, 33649, 35219, 36481, 36581, 37949, 38665, 39169
Offset: 1

Views

Author

Ovidiu Bagdasar, Oct 08 2020

Keywords

Comments

If p is a prime, then A085447(p)==6 (mod p).
This sequence contains the odd composite integers for which the congruence holds.
The generalized Pell-Lucas sequence of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy the identity V(p)==a (mod p) whenever p is prime and b=-1,1.
For a=6, b=-1, V(m) recovers A085447(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)

Crossrefs

Cf. A006497, A005845 (a=1), A330276 (a=2), A335669 (a=3), A335670 (a=4), A335671 (a=5).

Programs

  • Mathematica
    Select[Range[3, 20000, 2], CompositeQ[#] && Divisible[LucasL[#, 6] - 6, #] &]

Extensions

More terms from Amiram Eldar, Oct 09 2020

A338079 Odd composite integers m such that A086902(m) == 7 (mod m).

Original entry on oeis.org

25, 51, 91, 161, 265, 325, 425, 561, 791, 1105, 1113, 1325, 1633, 1921, 1961, 2001, 2465, 2599, 2651, 2737, 3445, 4081, 4505, 4929, 7345, 7685, 8449, 9361, 10325, 10465, 10825, 11285, 11713, 12025, 12291, 13021, 15457, 17111, 18193, 18881, 18921, 19307
Offset: 1

Views

Author

Ovidiu Bagdasar, Oct 08 2020

Keywords

Comments

If p is a prime, then A086902(p)==7 (mod p).
This sequence contains the odd composite integers for which the congruence holds.
The generalized Pell-Lucas sequence of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy the identity V(p)==a (mod p) whenever p is prime and b=-1,1.
For a=7, b=-1, V(m) recovers A086902(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)

Crossrefs

Cf. A006497, A005845 (a=1), A330276 (a=2), A335669 (a=3), A335670 (a=4), A335671 (a=5), A338078 (a=6).

Programs

  • Mathematica
    Select[Range[3, 20000, 2], CompositeQ[#] && Divisible[LucasL[#, 7] - 7, #] &]
Previous Showing 11-20 of 22 results. Next