cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A367004 a(n) is the smallest prime factor of n*2^n+1.

Original entry on oeis.org

3, 3, 5, 5, 7, 5, 3, 3, 11, 7, 13, 13, 3, 3, 17, 17, 5, 11, 3, 3, 23, 13, 5, 5, 3, 3, 7, 29, 31, 17, 3, 3, 47, 19, 37, 37, 3, 3, 41, 41, 13, 23, 3, 3, 11, 5, 7, 7, 3, 3, 53, 7, 5591, 29, 3, 3, 5, 31, 37, 61, 3, 3, 5, 5, 67, 5, 3, 3, 7, 37, 11, 41, 3, 3, 149
Offset: 1

Views

Author

Sean A. Irvine, Oct 31 2023

Keywords

Crossrefs

Programs

  • Maple
    seq(min(numtheory:-factorset(n*2^n+1)), n=1..100); # Robert Israel, Nov 09 2023
  • Mathematica
    Table[FactorInteger[n 2^n+1][[1,1]],{n,80}] (* Harvey P. Dale, Aug 14 2024 *)

Formula

a(n) = A020639(A002064(n)).

A210339 Generalized Cullen primes: any primes that can be written in the form n*b^n + 1 with n+2 > b > 2.

Original entry on oeis.org

19, 193, 52489, 114689, 9000000001, 259374246011, 38280596832649217, 59296646043258913, 408700964355468751, 2434970217729660813313, 13576803638250229989377, 21000000000000000000001, 3140085798164163223281069127, 4818833289797717549937328129
Offset: 1

Views

Author

Arkadiusz Wesolowski, Mar 20 2012

Keywords

Examples

			81*2^324 + 1 is a prime number and 81*2^324 + 1 = 81*16^81 + 1, so this number is in the sequence.
		

References

  • Harvey Dubner, Generalized Cullen numbers, J. Recreational Math. 21 (1989), pp. 190-194.

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[p = n*b^n + 1; If[p < 10^200 && PrimeQ[p], AppendTo[lst, p]], {b, 3, 100}, {n, b - 1, 413}]; Sort@lst

A357612 Numbers k such that 1 + 2^k*k^3 is prime.

Original entry on oeis.org

1, 5, 41, 202, 281, 394, 1157, 1211, 1816, 9845, 19780, 50800, 98621, 101945
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 17 2022

Keywords

Examples

			1 is in this sequence because 1 + 2^1*1^3 = 5 is prime;
5 is in this sequence because 1 + 2^5*5^3 = 4001 is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..2000] | IsPrime(1+2^n*n^3)];
  • Mathematica
    Select[Range[2000], PrimeQ[1 + 2^# * #^3] &] (* Amiram Eldar, Nov 17 2022 *)

Extensions

a(11)-a(12) from Amiram Eldar, Nov 17 2022
a(13)-a(14) from Michael S. Branicky, May 16 2023

A007637 Primes of form 3*k^2 - 3*k + 23.

Original entry on oeis.org

23, 29, 41, 59, 83, 113, 149, 191, 239, 293, 353, 419, 491, 569, 653, 743, 839, 941, 1049, 1163, 1283, 1409, 1823, 1973, 2129, 2459, 2633, 2999, 3191, 3389, 3593, 3803, 4019, 4241, 4703, 4943, 5189, 5441, 6791, 7079, 7673, 8291, 8609
Offset: 1

Views

Author

Keywords

References

  • Paul Hoffman, Archimedes' Revenge, Penguin Books 1988, pp. 39-40.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 145.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A007638.

Programs

  • Magma
    [a: n in [1..60] | IsPrime(a) where a is 3*n^2-3*n+23]; // Vincenzo Librandi, Mar 20 2013
  • Mathematica
    Select[Table[3 n^2 - 3 n + 23, {n, 60}], PrimeQ] (* Vincenzo Librandi, Mar 20 2013 *)

A007639 Primes of form 2n^2 - 2n + 19.

Original entry on oeis.org

19, 23, 31, 43, 59, 79, 103, 131, 163, 199, 239, 283, 331, 383, 439, 499, 563, 631, 859, 1031, 1123, 1319, 1423, 1531, 1759, 1879, 2003, 2131, 2399, 2539, 2683, 3299, 3463, 3631, 3803, 4159, 4723, 4919, 5119, 5323, 5531, 5743, 6863, 7583, 8599
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A139827.

Programs

  • Magma
    [a: n in [1..60] | IsPrime(a) where a is 2*n^2-2*n+19]; // Vincenzo Librandi, Mar 20 2013
  • Mathematica
    Select[Table[2n^2-2n+19,{n,90}],PrimeQ] (* Harvey P. Dale, Dec 19 2011 *)

Formula

The primes are congruent to {2, 15, 19, 23, 31, 35, 39, 43, 51, 55, 59, 79, 87, 91, 103, 119, 131, 135, 143} (mod 148). - T. D. Noe, May 02 2008

A242175 Numbers k such that k*2^k + 1 is a semiprime.

Original entry on oeis.org

2, 3, 4, 5, 8, 9, 11, 16, 21, 33, 35, 101, 105, 131, 158, 165, 191, 234, 251, 435, 453, 459, 561, 579, 604, 671, 744, 753, 933, 963, 1041, 1146, 1168, 1254, 1794
Offset: 1

Views

Author

Vincenzo Librandi, May 07 2014

Keywords

Comments

The semiprimes of this form are 9, 25, 65, 161, 2049, 4609, 22529, ... (A242116).
a(35) >= 1528. Below 2000, 1794 and 1961 are in the sequence. Unknown factorization for 1528, 1576, 1908. - Hugo Pfoertner, Jul 29 2019
The k*2^k + 1 corresponding to 1528 and 1576 each have at least three prime factors. - Tyler Busby, Mar 16 2025

Crossrefs

Programs

  • Magma
    IsSemiprime:=func; [n: n in [2..230] | IsSemiprime(s) where s is n*2^n+1]; // Bruno Berselli, May 08 2014
  • Mathematica
    Select[Range[165], Plus@@Last/@FactorInteger[# * 2^# + 1]==2&]

Formula

A002064(a(n)) = A242116(n). - Amiram Eldar, Nov 27 2019

Extensions

a(17) from Bruno Berselli, May 08 2014
a(18)-a(30) from Luke March, Aug 13 2015
a(31)-a(34) from Hugo Pfoertner, Jul 29 2019
Wrong term 941 removed by Amiram Eldar, Nov 27 2019
a(35) from Tyler Busby, Mar 16 2025

A366422 Numbers k such that k^4*2^k + 1 is a prime.

Original entry on oeis.org

1, 24, 33, 36, 99, 195, 244, 464, 567, 621, 741, 1395, 2164, 3309, 3537, 3708, 4413, 5001, 5187, 5292, 15504, 18816, 19521, 24657, 27972, 57687
Offset: 1

Author

Juri-Stepan Gerasimov, Nov 16 2023

Keywords

Comments

No further terms <= 100000. - Michael S. Branicky, Nov 17 2023

Crossrefs

Numbers k such that k^m*2^k + 1 is a prime: 0, 1, 2, 4, 8, 16, .. (m = 0), A005849 (m = 1), A058780 (m = 2), A357612 (m = 3), this sequence (m = 4).

Programs

  • Magma
    [k: k in [0..4000] | IsPrime(k^4*2^k+1)];
  • Mathematica
    Select[Range[6000], PrimeQ[#^4*2^# + 1] &] (* Amiram Eldar, Nov 16 2023 *)

Extensions

a(22)-a(25) from Amiram Eldar, Nov 17 2023
a(26) from Michael S. Branicky, Nov 17 2023

A367421 Numbers k such that k^5*2^k + 1 is a prime.

Original entry on oeis.org

1, 41, 53, 231, 532, 1632, 1642, 9701, 13372, 19613, 25518, 31929, 92476, 97433
Offset: 1

Author

Juri-Stepan Gerasimov, Nov 18 2023

Keywords

Crossrefs

Numbers k such that k^m*2^k + 1 is a prime: 0, 1, 2, 4, 8, 16, .. (m = 0), A005849 (m = 1), A058780 (m = 2), A357612 (m = 3), A366422 (m = 4), this sequence (m = 5).

Programs

  • Magma
    [k: k in [1..1000] | IsPrime(k^5*2^k+1)];
  • Mathematica
    Select[Range[2000], PrimeQ[#^5*2^# + 1] &] (* Amiram Eldar, Nov 18 2023 *)

Extensions

a(10)-a(12) from Michael S. Branicky, Nov 18 2023
a(13)-a(14) from Michael S. Branicky, Aug 26 2024

A007638 Numbers k such that 3*k^2 - 3*k + 23 is composite.

Original entry on oeis.org

23, 24, 28, 31, 39, 44, 45, 46, 47, 50, 52, 56, 57, 60, 63, 67, 69, 70, 71, 79, 80, 85, 86, 88, 89, 90, 92, 93, 96, 97, 102, 107, 108, 112, 115, 116, 118, 119, 121, 122, 123, 126, 128, 131, 134, 137, 138, 139, 143, 144, 145, 147, 148, 151, 153, 156, 157, 161, 162
Offset: 1

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

A173474 Numbers n such that n*2^n + 1 is not prime.

Original entry on oeis.org

0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
Offset: 1

Author

Juri-Stepan Gerasimov, Feb 19 2010

Keywords

Comments

Complement of "prime Cullen numbers" A005849.
Where a(n)=n for n <= 140, and a(141)=142,..., a(4711)=4712, a(4712)=4714,..., a(5792)=5794, a(5793)=5796,..., a(6607)=6610, a(6608)=6612,..., a(18491)=18495, a(18492)=18497,..., a(32286)=32291, a(32287)=32293,..., a(32462)=32468, a(32463)=32470,..., a(59648)=59655, a(59649)=59657,..., a(90816)=90824, a(90817)=90826,..., a(262403)=262418, a(262404)=262420,..., a(361264)=361274, a(361265)=361276,..., a(481887)=481898, a(481888)=481900,..., a(1354815)=1354827, a(1354816)=1354829,..., a(6328534)=6328547, a(6328535)=6328549,...
Otherwise said, this includes all nonnegative integers except for the "prime Cullen numbers" (more precisely, indices of primes in A002064): 1, 140, 4713, 5795, ... listed in A005849. - M. F. Hasler, Jan 18 2015

Crossrefs

Programs

  • Mathematica
    nnnpQ[n_]:=Module[{c=n 2^n+1},!PrimeQ[c]&&c>=0]; Select[Range[0,100], nnnpQ] (* Harvey P. Dale, Aug 23 2011 *)

Extensions

Corrected and edited by M. F. Hasler, Jan 18 2015
Name edited by Michel Marcus, Nov 02 2017
Previous Showing 11-20 of 29 results. Next