cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 90 results. Next

A069125 a(n) = (11*n^2 - 11*n + 2)/2.

Original entry on oeis.org

1, 12, 34, 67, 111, 166, 232, 309, 397, 496, 606, 727, 859, 1002, 1156, 1321, 1497, 1684, 1882, 2091, 2311, 2542, 2784, 3037, 3301, 3576, 3862, 4159, 4467, 4786, 5116, 5457, 5809, 6172, 6546, 6931, 7327, 7734, 8152, 8581, 9021, 9472, 9934, 10407, 10891, 11386, 11892
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 07 2002

Keywords

Comments

Centered hendecagonal (11-gonal) numbers. - Omar E. Pol, Oct 03 2011
Numbers of the form (2*m+1)^2 + k*m*(m+1)/2: in this case is k=3. See also A254963. - Bruno Berselli, Feb 11 2015

Examples

			a(5)=111 because 111 = (11*5^2 - 11*5 + 2)/2 = (275 - 55 + 2)/2 = 222/2.
		

Crossrefs

Programs

Formula

a(n) = 1 + Sum_{j=0..n-1} (11*j). - Xavier Acloque, Oct 22 2003
Binomial transform of [1, 11, 11, 0, 0, 0, ...]; Narayana transform (A001263) of [1, 11, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
a(n) = 11*n + a(n-1) - 11 with n > 1, a(1)=1. - Vincenzo Librandi, Aug 08 2010
G.f.: -x*(1+9*x+x^2)/(x-1)^3. - R. J. Mathar, Jun 05 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=12, a(2)=34. - Harvey P. Dale, Jun 25 2011
a(n) = A152740(n-1) + 1. - Omar E. Pol, Oct 03 2011
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = 2*Pi*tan(sqrt(3/11)*Pi/2)/sqrt(33).
Sum_{n>=1} a(n)/n! = 13*e/2 - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 13/(2*e) - 1. (End)
a(n) = A003154(n) - A000217(n-1). - Leo Tavares, Mar 29 2022
E.g.f.: exp(x)*(1 + 11*x^2/2) - 1. - Elmo R. Oliveira, Oct 18 2024

Extensions

More terms from Harvey P. Dale, Jun 25 2011
Name rewritten by Bruno Berselli, Feb 11 2015

A069131 Centered 18-gonal numbers.

Original entry on oeis.org

1, 19, 55, 109, 181, 271, 379, 505, 649, 811, 991, 1189, 1405, 1639, 1891, 2161, 2449, 2755, 3079, 3421, 3781, 4159, 4555, 4969, 5401, 5851, 6319, 6805, 7309, 7831, 8371, 8929, 9505, 10099, 10711, 11341, 11989, 12655, 13339, 14041, 14761, 15499, 16255, 17029, 17821
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 07 2002

Keywords

Comments

Equals binomial transform of [1, 18, 18, 0, 0, 0, ...]. Example: a(3) = 55 = (1, 2, 1) dot (1, 18, 18) = (1 + 36 + 18). - Gary W. Adamson, Aug 24 2010
Narayana transform (A001263) of [1, 18, 0, 0, 0, ...]. - Gary W. Adamson, Jul 28 2011
From Lamine Ngom, Aug 19 2021: (Start)
Sequence is a spoke of the hexagonal spiral built from the terms of A016777 (see illustration in links section).
a(n) is a bisection of A195042.
a(n) is a trisection of A028387.
a(n) + 1 is promic (A002378).
a(n) + 2 is a trisection of A002061.
a(n) + 9 is the arithmetic mean of its neighbors.
4*a(n) + 5 is a square: A016945(n)^2. (End)

Examples

			a(5) = 181 because 9*5^2 - 9*5 + 1 = 225 - 45 + 1 = 181.
		

Crossrefs

Programs

Formula

a(n) = 9*n^2 - 9*n + 1.
a(n) = 18*n + a(n-1) - 18 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
G.f.: ( x*(1+16*x+x^2) ) / ( (1-x)^3 ). - R. J. Mathar, Feb 04 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=1, a(2)=19, a(3)=55. - Harvey P. Dale, Jan 20 2014
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(5)*Pi/6)/(3*sqrt(5)).
Sum_{n>=1} a(n)/n! = 10*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 10/e - 1. (End)
From Lamine Ngom, Aug 19 2021: (Start)
a(n) = 18*A000217(n) + 1 = 9*A002378(n) + 1.
a(n) = 3*A003215(n) - 2.
a(n) = A247792(n) - 9*n.
a(n) = A082040(n) + A304163(n) - a(n-1) = A016778(n) + A016790(n) - a(n-1), n > 0.
a(n) + a(n+1) = 2*A247792(n) = A010008(n), n > 0.
a(n+1) - a(n) = 18*n = A008600(n). (End)
From Leo Tavares, Oct 31 2021: (Start)
a(n)= A000290(n) + A139278(n-1)
a(n) = A069129(n) + A002378(n-1)
a(n) = A062786(n) + 8*A000217(n-1)
a(n) = A062786(n) + A033996(n-1)
a(n) = A060544(n) + 9*A000217(n-1)
a(n) = A060544(n) + A027468(n-1)
a(n) = A016754(n-1) + 10*A000217(n-1)
a(n) = A016754(n-1) + A124080
a(n) = A069099(n) + 11*A000217(n-1)
a(n) = A069099(n) + A152740(n-1)
a(n) = A003215(n-1) + 12*A000217(n-1)
a(n) = A003215(n-1) + A049598(n-1)
a(n) = A005891(n-1) + 13*A000217(n-1)
a(n) = A005891(n-1) + A152741(n-1)
a(n) = A001844(n) + 14*A000217(n-1)
a(n) = A001844(n) + A163756(n-1)
a(n) = A005448(n) + 15*A000217(n-1)
a(n) = A005448(n) + A194715(n-1). (End)
E.g.f.: exp(x)*(1 + 9*x^2) - 1. - Nikolaos Pantelidis, Feb 06 2023

A247619 Start with a single pentagon; at n-th generation add a pentagon at each expandable vertex; a(n) is the sum of all label values at n-th generation. (See comment for construction rules.)

Original entry on oeis.org

1, 6, 16, 36, 66, 116, 186, 296, 446, 676, 986, 1456, 2086, 3036, 4306, 6216, 8766, 12596, 17706, 25376, 35606, 50956, 71426, 102136, 143086, 204516, 286426, 409296, 573126, 818876, 1146546, 1638056, 2293406, 3276436, 4587146, 6553216, 9174646, 13106796
Offset: 0

Views

Author

Kival Ngaokrajang, Sep 21 2014

Keywords

Comments

Inspired by A061777, let us assign the label "1" to an origin pentagon; at the n-th generation add a pentagon at each expandable vertex, i.e., a vertex such that the new added generations will not overlap existing ones, but overlapping among new generations is allowed. Each nonoverlapping pentagon will have the same label value as its predecessor; for the overlapping ones, the label value will be sum of label values of predecessors. The pentagon count is A005891. See illustration. [Edited for grammar/style by Peter Munn, Jan 14 2023]

Crossrefs

See A358632 for a related concept.

Programs

  • Mathematica
    LinearRecurrence[{2, 1, -4, 2}, {1, 6, 16, 36}, 50] (* Paolo Xausa, Aug 21 2024 *)
  • PARI
    {
    b=0;a=1;print1(1,", ");
    for (n=0,50,
         b=b+2^floor(n/2);
         a=a+5*b;
         print1(a,", ")
        )
    }
    
  • PARI
    Vec(-(2*x^3+3*x^2+4*x+1)/((x-1)^2*(2*x^2-1)) + O(x^100)) \\ Colin Barker, Sep 21 2014

Formula

a(0) = 1, for n >= 1, a(n) = 5*A027383(n-1) + a(n-1). [Offset corrected by Peter Munn, Apr 20 2023]
a(n) = 2*a(n-1)+a(n-2)-4*a(n-3)+2*a(n-4). G.f.: -(2*x^3+3*x^2+4*x+1) / ((x-1)^2*(2*x^2-1)). - Colin Barker, Sep 21 2014

Extensions

More terms from Colin Barker, Sep 21 2014

A069127 Centered 14-gonal numbers.

Original entry on oeis.org

1, 15, 43, 85, 141, 211, 295, 393, 505, 631, 771, 925, 1093, 1275, 1471, 1681, 1905, 2143, 2395, 2661, 2941, 3235, 3543, 3865, 4201, 4551, 4915, 5293, 5685, 6091, 6511, 6945, 7393, 7855, 8331, 8821, 9325, 9843, 10375, 10921, 11481, 12055, 12643, 13245, 13861, 14491
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 07 2002

Keywords

Comments

Binomial transform of [1, 14, 14, 0, 0, 0, ...] and Narayana transform (A001263) of [1, 14, 0, 0, 0, ...]. - Gary W. Adamson, Jul 29 2011
Centered tetradecagonal numbers or centered tetrakaidecagonal numbers. - Omar E. Pol, Oct 03 2011

Examples

			a(5) = 141 because 7*5^2 - 7*5 + 1 = 175 - 35 + 1 = 141.
a(5) = 71 because 71 = (7*5^2 - 7*5 + 2)/2 = (175 - 35 + 2)/2 = 142/2.
From _Bruno Berselli_, Oct 27 2017: (Start)
1   =         -(1) + (2).
15  =       -(1+2) + (3+4+5+6).
43  =     -(1+2+3) + (4+5+6+7+8+9+10).
85  =   -(1+2+3+4) + (5+6+7+8+9+10+11+12+13+14).
141 = -(1+2+3+4+5) + (6+7+8+9+10+11+12+13+14+15+16+17+18). (End)
		

Crossrefs

Programs

Formula

a(n) = 7*n^2 - 7*n + 1.
a(n) = 14*n+a(n-1)-14 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
G.f.: -x*(1+12*x+x^2) / (x-1)^3. - R. J. Mathar, Feb 04 2011
a(n) = A163756(n-1) + 1. - Omar E. Pol, Oct 03 2011
a(n) = a(-n+1) = A193053(2n-2) + A193053(2n-3). - Bruno Berselli, Oct 21 2011
Sum_{n>=1} 1/a(n) = Pi * tan(sqrt(3/7)*Pi/2) / sqrt(21). - Vaclav Kotesovec, Jul 23 2019
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} a(n)/n! = 8*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 8/e - 1. (End)
a(n) = A069099(n) + 7*A000217(n-1). - Leo Tavares, Jul 09 2021
E.g.f.: exp(x)*(1 + 7*x^2) - 1. - Stefano Spezia, Aug 01 2024

A086272 Rectangular array T(n,k) of central polygonal numbers, by antidiagonals.

Original entry on oeis.org

1, 3, 1, 7, 4, 1, 13, 10, 5, 1, 21, 19, 13, 6, 1, 31, 31, 25, 16, 7, 1, 43, 46, 41, 31, 19, 8, 1, 57, 64, 61, 51, 37, 22, 9, 1, 73, 85, 85, 76, 61, 43, 25, 10, 1, 91, 109, 113, 106, 91, 71, 49, 28, 11, 1, 111, 136, 145, 141, 127, 106, 81, 55, 31, 12, 1, 133, 166, 181, 181, 169
Offset: 1

Views

Author

Clark Kimberling, Jul 14 2003

Keywords

Comments

In the standard notation, the offset is different: the first row are the 2-gonal, the second row the 3-gonal numbers, etc. - R. J. Mathar, Oct 07 2011

Examples

			First rows:
1,3,7,13,21,31,43,57,73,91,111,..   A002061
1,4,10,19,31,46,64,85,109,136,166,...  A005448
1,5,13,25,41,61,85,113,145,181,221,..   A001844
1,6,16,31,51,76,106,141,181,226,276,...  A005891
1,7,19,37,61,91,127,169,217,271,331,...   A003215
1,8,22,43,71,106,148,197,253,316,386,...    A069099
1,9,25,49,81,121,169,225,289,361,441,...    A016754
1,10,28,55,91,136,190,253,325,406,496,...    A060544
		

Crossrefs

Formula

T(k, n)=(k+1)*binomial(n, 2)+1.

A069126 Centered 13-gonal numbers.

Original entry on oeis.org

1, 14, 40, 79, 131, 196, 274, 365, 469, 586, 716, 859, 1015, 1184, 1366, 1561, 1769, 1990, 2224, 2471, 2731, 3004, 3290, 3589, 3901, 4226, 4564, 4915, 5279, 5656, 6046, 6449, 6865, 7294, 7736, 8191, 8659, 9140, 9634, 10141, 10661, 11194
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 07 2002

Keywords

Comments

Centered tridecagonal numbers or centered triskaidecagonal numbers. - Omar E. Pol, Oct 03 2011

Examples

			a(5) = 131 because 131 = (13*5^2 - 13*5 + 2)/2 = (325 - 65 + 2)/2 = 262/2 = 131.
		

Crossrefs

Programs

  • Mathematica
    FoldList[#1 + #2 &, 1, 13 Range@ 45] (* Robert G. Wilson v, Feb 02 2011 *)
    LinearRecurrence[{3,-3,1},{1,14,40},60] (* Harvey P. Dale, Jan 20 2014 *)
    With[{nn=50},Total/@Thread[{PolygonalNumber[13,Range[nn]],Range[0,nn-1]^2}]] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Aug 29 2016 *)
  • PARI
    a(n)=13*n(n-1)/2+1 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = (13n^2 - 13n + 2)/2.
Binomial transform of [1, 13, 13, 0, 0, 0, ...]; Narayana transform (A001263) of [1, 13, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
a(n) = 13*n+a(n-1)-13 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
G.f.: -x*(1+11*x+x^2) / (x-1)^3. - R. J. Mathar, Feb 04 2011
a(n) = A152741(n-1) + 1. - Omar E. Pol, Oct 03 2011
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = 2*Pi*tan(sqrt(5/13)*Pi/2)/sqrt(65).
Sum_{n>=1} a(n)/n! = 15*e/2 - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 15/(2*e) - 1. (End)
E.g.f.: exp(x)*(1 + 13*x^2/2) - 1. - Stefano Spezia, May 15 2022

A167552 A triangle related to the a(n) formulas of the rows of the ED1 array A167546.

Original entry on oeis.org

1, 3, -2, 5, -5, 2, 7, -7, 14, -8, 9, -6, 63, -66, 24, 11, 0, 209, -264, 308, -144, 13, 13, 559, -689, 2236, -2132, 720, 15, 35, 1281, -1255, 11640, -14980, 14064, -5760, 17, 68, 2618, -1360, 47753, -68068, 145452, -126480, 40320
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009, Nov 23 2009

Keywords

Comments

The a(n) formulas given below correspond to the first ten rows of the ED1 array A167546.
The recurrence relations of the a(n) formulas for the left hand triangle columns, see the cross-references below, lead to the sequences A003148 and A007318.

Examples

			Row 1: a(n) = 1.
Row 2: a(n) = 3*n - 2.
Row 3: a(n) = 5*n^2 - 5*n + 2.
Row 4: a(n) = 7*n^3 - 7*n^2 + 14*n - 8.
Row 5: a(n) = 9*n^4 - 6*n^3 + 63*n^2 - 66*n + 24.
Row 6: a(n) = 11*n^5 + 0*n^4 + 209*n^3 - 264*n^2 + 308*n - 144.
Row 7: a(n) = 13*n^6 +13*n^5 +559*n^4 -689*n^3 +2236*n^2 -2132*n +720.
Row 8: a(n) = 15*n^7 + 35*n^6 + 1281*n^5 - 1255*n^4 + 11640*n^3 - 14980*n^2 + 14064*n - 5760.
Row 9: a(n) = 17*n^8 + 68*n^7 + 2618*n^6 - 1360*n^5 + 47753*n^4 - 68068*n^3 + 145452*n^2 - 126480*n + 40320.
Row 10: a(n) = 19*n^9 + 114*n^8 + 4902*n^7 + 684*n^6 + 163419*n^5 - 224694*n^4 + 1048268*n^3 - 1308264*n^2 + 1081632*n - 403200.
		

Crossrefs

A167546 is the ED1 array.
A000012, A016777, 2*A005891, A167547, A167548 and A167549 are the first sixth ED1 array rows.
A098557 and A167553 equal the first two right hand columns of this triangle.
A005408, A167554 and A167555, A168302 and A168303 equal the first five left hand columns of this triangle.
A000142 equals the row sums.
Cf. A003148 and A007318.

A262221 a(n) = 25*n*(n + 1)/2 + 1.

Original entry on oeis.org

1, 26, 76, 151, 251, 376, 526, 701, 901, 1126, 1376, 1651, 1951, 2276, 2626, 3001, 3401, 3826, 4276, 4751, 5251, 5776, 6326, 6901, 7501, 8126, 8776, 9451, 10151, 10876, 11626, 12401, 13201, 14026, 14876, 15751, 16651, 17576, 18526, 19501, 20501, 21526, 22576, 23651
Offset: 0

Views

Author

Bruno Berselli, Sep 15 2015

Keywords

Comments

Also centered 25-gonal (or icosipentagonal) numbers.
This is the case k=25 of the formula (k*n*(n+1) - (-1)^k + 1)/2. See table in Links section for similar sequences.
For k=2*n, the formula shown above gives A011379.
Primes in sequence: 151, 251, 701, 1951, 3001, 4751, 10151, 12401, ...

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 51 (23rd row of the table).

Crossrefs

Cf. centered polygonal numbers listed in A069190.
Similar sequences of the form (k*n*(n+1) - (-1)^k + 1)/2 with -1 <= k <= 26: A000004, A000124, A002378, A005448, A005891, A028896, A033996, A035008, A046092, A049598, A060544, A064200, A069099, A069125, A069126, A069128, A069130, A069132, A069174, A069178, A080956, A124080, A163756, A163758, A163761, A164136, A173307.

Programs

  • Magma
    [25*n*(n+1)/2+1: n in [0..50]];
  • Mathematica
    Table[25 n (n + 1)/2 + 1, {n, 0, 50}]
    25*Accumulate[Range[0,50]]+1 (* or *) LinearRecurrence[{3,-3,1},{1,26,76},50] (* Harvey P. Dale, Jan 29 2023 *)
  • PARI
    vector(50, n, n--; 25*n*(n+1)/2+1)
    
  • Sage
    [25*n*(n+1)/2+1 for n in (0..50)]
    

Formula

G.f.: (1 + 23*x + x^2)/(1 - x)^3.
a(n) = a(-n-1) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A123296(n) + 1.
a(n) = A000217(5*n+2) - 2.
a(n) = A034856(5*n+1).
a(n) = A186349(10*n+1).
a(n) = A054254(5*n+2) with n>0, a(0)=1.
a(n) = A000217(n+1) + 23*A000217(n) + A000217(n-1) with A000217(-1)=0.
Sum_{i>=0} 1/a(i) = 1.078209111... = 2*Pi*tan(Pi*sqrt(17)/10)/(5*sqrt(17)).
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=0} a(n)/n! = 77*e/2.
Sum_{n>=0} (-1)^(n+1) * a(n)/n! = 23/(2*e). (End)
E.g.f.: exp(x)*(2 + 50*x + 25*x^2)/2. - Elmo R. Oliveira, Dec 24 2024

A182432 Recurrence a(n)*a(n-2) = a(n-1)*(a(n-1) + 3) with a(0) = 1, a(1) = 4.

Original entry on oeis.org

1, 4, 28, 217, 1705, 13420, 105652, 831793, 6548689, 51557716, 405913036, 3195746569, 25160059513, 198084729532, 1559517776740, 12278057484385, 96664942098337, 761041479302308, 5991666892320124, 47172293659258681, 371386682381749321
Offset: 0

Views

Author

Peter Bala, Apr 30 2012

Keywords

Comments

The non-linear recurrence equation a(n)*a(n-2) = a(n-1)*(a(n-1) + r) with initial conditions a(0) = 1, a(1) = 1 + r has the solution a(n) = 1/2 + (1/2)*Sum_{k = 0..n} (2*r)^k*binomial(n+k,2*k) = 1/2 + b(n,2*r)/2, where b(n,x) are the Morgan-Voyce polynomials of A085478. The recurrence produces sequences A101265 (r = 1), A011900 (r = 2) and A054318 (r = 4), as well as signed versions of A133872 (r = -1), A109613 (r = -2), A146983 (r = -3) and A084159(r = -4).
Also the indices of centered pentagonal numbers (A005891) which are also centered triangular numbers (A005448). - Colin Barker, Jan 01 2015
Also positive integers y in the solutions to 3*x^2 - 5*y^2 - 3*x + 5*y = 0. - Colin Barker, Jan 01 2015

Crossrefs

Programs

  • Magma
    I:=[1, 4, 28]; [n le 3 select I[n] else 9*Self(n-1)-9*Self(n-2)+Self(n-3): n in [1..25]]; // Vincenzo Librandi, May 18 2012
    
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==4,a[n]==(a[-1+n] (3+a[-1+n]))/a [-2+n]}, a[n],{n,30}] (* or *) LinearRecurrence[{9,-9,1},{1,4,28},30] (* Harvey P. Dale, May 14 2012 *)
  • PARI
    Vec((1-5*x+x^2)/((1-x)*(1-8*x+x^2)) + O(x^100)) \\ Colin Barker, Jan 01 2015

Formula

a(n) = 1/2 + (1/2)*Sum_{k = 0..n} 6^k*binomial(n+k,2*k).
a(n) = R(n,3) where R(n,x) denotes the row polynomials of A211955.
a(n) = (1/u)*T(n,u)*T(n+1,u) with u = sqrt(5/2) and T(n,x) the n-th Chebyshev polynomial of the first kind.
Recurrence equation: a(n) = 8*a(n-1) - a(n-2) - 3 with a(0) = 1 and a(1) = 4.
O.g.f.: (1 - 5*x + x^2)/((1 - x)*(1 - 8*x + x^2)) = 1 + 4*x + 28*x^2 + ....
Sum_{n >= 0} 1/a(n) = sqrt(5/3); 5 - 3*(Sum_{k = 0..2*n} 1/a(k))^2 = 2/A070997(n)^2.
a(0) = 1, a(1) = 4, a(2) = 28, a(n) = 9*a(n-1) - 9*a(n-2) + a(n-3). - Harvey P. Dale, May 14 2012

A247904 Start with a single pentagon; at n-th generation add a pentagon at each expandable vertex (this is the "vertex to side" version); a(n) is the sum of all label values at n-th generation. (See comment for construction rules.)

Original entry on oeis.org

1, 6, 21, 56, 131, 286, 601, 1236, 2511, 5066, 10181, 20416, 40891, 81846, 163761, 327596, 655271, 1310626, 2621341, 5242776, 10485651, 20971406, 41942921, 83885956, 167772031, 335544186, 671088501, 1342177136, 2684354411, 5368708966, 10737418081
Offset: 0

Views

Author

Kival Ngaokrajang, Sep 26 2014

Keywords

Comments

Refer to A247619, which is the "vertex to vertex" expansion version. For this case, the expandable vertices of the existing generation will contact the sides of the new ones i.e."vertex to side" expansion version. Let us assign the label "1" to the pentagon at the origin; at n-th generation add a pentagon at each expandable vertex, i.e. each vertex where the added generations will not overlap the existing ones, although overlaps among new generations are allowed. The non-overlapping pentagons will have the same label value as a predecessor; for the overlapping ones, the label value will be sum of label values of predecessors. a(n) is the sum of all label values at n-th generation. The pentagons count is A005891. See illustration. For n >= 1, (a(n) - a(n-1))/5 is A000225.

Crossrefs

Cf. Vertex to vertex version: A061777, A247618, A247619, A247620.
Cf. Vertex to side version: A101946, A247903, A247905.

Programs

  • Magma
    [10*2^n -(5*n+9): n in [0..50]]; // G. C. Greubel, Feb 18 2022
    
  • Mathematica
    LinearRecurrence[{4,-5,2}, {1,6,21}, 51] (* G. C. Greubel, Feb 18 2022 *)
  • PARI
    a(n) = if (n<1, 1, 5*(2^n-1)+a(n-1))
    for (n=0, 50, print1(a(n), ", "))
    
  • PARI
    Vec(-(2*x^2+2*x+1)/((x-1)^2*(2*x-1)) + O(x^100)) \\ Colin Barker, Sep 26 2014
    
  • Sage
    [5*2^(n+1) -(5*n+9) for n in (0..50)] # G. C. Greubel, Feb 18 2022

Formula

a(0) = 1, for n >= 1, a(n) = 5*A000225(n) + a(n-1).
a(n) = 4*a(n-1)-5*a(n-2)+2*a(n-3). - Colin Barker, Sep 26 2014
G.f.: (1+2*x+2*x^2)/((1-x)^2*(1-2*x)). - Colin Barker, Sep 26 2014
From G. C. Greubel, Feb 18 2022: (Start)
a(n) = 10*2^n - (5*n + 9).
E.g.f.: 10*exp(2*x) - (9 + 5*x)*exp(x). (End)

Extensions

More terms from Colin Barker, Sep 26 2014
Previous Showing 41-50 of 90 results. Next