cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 59 results. Next

A210647 Least nonnegative m such that k(n) + k(m) is prime, where k(n) = n*(n+1)^2/2.

Original entry on oeis.org

0, 1, 22, 2, 142, 1, 2, 10, 22, 1, 34, 10, 2, 37, 46, 6, 10, 1, 6, 46, 46, 1, 10, 106, 6, 1, 58, 2, 22, 7, 2, 58, 94, 3, 22, 10, 2, 1, 22, 2, 10, 16, 6, 82, 118, 4, 82, 10, 18, 1, 10, 2, 22, 1, 2, 10, 10, 4, 22, 58, 2, 19, 10, 2, 46, 1, 10, 70, 82, 3, 22, 34
Offset: 1

Views

Author

Gerasimov Sergey, Mar 27 2012

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := n (n + 1)^2/2; Table[k = 0; While[! PrimeQ[f[n] + f[k]], k++]; k, {n, 100}] (* T. D. Noe, Apr 03 2012 *)
  • PARI
    a(n)=my(K=n*(n+1)^2/2,m);while(!isprime(K+m*(m+1)^2/2),m++);m \\ Charles R Greathouse IV, Aug 03 2012

Extensions

Corrected by R. J. Mathar, Mar 31 2012

A281381 a(n) = n*(n + 1)*(4*n + 5)/2.

Original entry on oeis.org

0, 9, 39, 102, 210, 375, 609, 924, 1332, 1845, 2475, 3234, 4134, 5187, 6405, 7800, 9384, 11169, 13167, 15390, 17850, 20559, 23529, 26772, 30300, 34125, 38259, 42714, 47502, 52635, 58125, 63984, 70224, 76857, 83895, 91350, 99234, 107559, 116337, 125580, 135300, 145509, 156219, 167442, 179190, 191475
Offset: 0

Views

Author

Peter M. Chema, Jan 21 2017

Keywords

Comments

Shares its digital root, zero together with period 9: repeat [3, 3, 3, 6, 6, 6, 9, 9, 9] with A027480.
Final digits cycle a length period 20: repeat [0, 9, 9, 2, 0, 5, 9, 4, 2, 5, 5, 4, 4, 7, 5, 0, 4, 9, 7, 0].

Crossrefs

Partial sums of A195319.

Programs

  • Magma
    [n*(n+1)*(4*n+5)/2 : n in [0..50]]; // Wesley Ivan Hurt, Aug 30 2022
  • Mathematica
    Table[n (n + 1) (4 n + 5)/2, {n, 0, 45}] (* or *)
    CoefficientList[Series[3 x (3 + x)/(1 - x)^4, {x, 0, 45}], x] (* Michael De Vlieger, Jan 21 2017 *)
  • PARI
    concat(0, Vec(3*x*(3 + x) / (1 - x)^4 + O(x^50))) \\ Colin Barker, Jan 21 2017
    
  • PARI
    a(n) = n*(n + 1)*(4*n + 5)/2 \\ Charles R Greathouse IV, Feb 01 2017
    

Formula

a(n) = 2*n^3 + 9*n^2/2 + 5*n/2.
a(n) = 3*A016061(n).
a(n) = A006002(n+1)*(n) - A006002(n)*(n-1).
a(n) = A007742(n)*(n - 1)/2.
From Colin Barker, Jan 21 2017: (Start)
G.f.: 3*x*(3 + x) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. (End)
From Stefano Spezia, Aug 30 2022: (Start)
E.g.f.: exp(x)*x*(18 + 21*x + 4*x^2)/2.
Sum_{n>0} 1/a(n) = 2*(20*log(8) + 10*Pi - 71)/25 = 0.1603805895595720759728288896228498341201... . (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*sqrt(2)*Pi/5 + 4*(3+sqrt(2))*log(2)/5 - 8*sqrt(2)*log(2-sqrt(2))/5 - 178/25. - Amiram Eldar, Sep 22 2022

A302447 Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(k+1)^2/2).

Original entry on oeis.org

1, 2, 12, 46, 175, 610, 2107, 6918, 22256, 69498, 212649, 636910, 1874470, 5423332, 15457223, 43433088, 120467606, 330077358, 894193347, 2396636236, 6359325300, 16714566278, 43539016461, 112449776138, 288083439729, 732356943548, 1848098069644, 4630892393996
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 08 2018

Keywords

Comments

Euler transform of A006002.

Crossrefs

Programs

  • Mathematica
    nmax = 27; CoefficientList[Series[Product[1/(1 - x^k)^(k (k + 1)^2/2), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 (d + 1)^2/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 27}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A006002(k).
a(n) ~ exp(5 * (3*Zeta(5))^(1/5) * n^(4/5) / 2^(8/5) + Pi^4 * n^(3/5) / (90 * 2^(1/5) * (3*Zeta(5))^(3/5)) + (Zeta(3) / 2^(9/5) - Pi^8 / (27000 * 2^(4/5) * Zeta(5))) * n^(2/5) / (3*Zeta(5))^(2/5) + (Pi^8 / (12150000 * Zeta(5)) - Zeta(3) / 900) * Pi^4 * n^(1/5) / (2^(2/5) * 3^(1/5) * Zeta(5)^(6/5)) + 1/24 - Zeta(3) / (4*Pi^2) - Pi^16 / (5248800000 * Zeta(5)^3) + Pi^8 * Zeta(3) / (324000 * Zeta(5)^2) - Zeta(3)^2 / (120 * Zeta(5)) + Zeta'(-3)/2) * (3*Zeta(5))^(43/400) / (2^(57/200) * sqrt(5*A*Pi) * n^(243/400)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 08 2018

A360174 Triangle read by rows. T(n, k) = (k + 1) * abs(Stirling1(n, k)).

Original entry on oeis.org

1, 0, 2, 0, 2, 3, 0, 4, 9, 4, 0, 12, 33, 24, 5, 0, 48, 150, 140, 50, 6, 0, 240, 822, 900, 425, 90, 7, 0, 1440, 5292, 6496, 3675, 1050, 147, 8, 0, 10080, 39204, 52528, 33845, 11760, 2254, 224, 9, 0, 80640, 328752, 472496, 336420, 134694, 31752, 4368, 324, 10
Offset: 0

Views

Author

Peter Luschny, Feb 08 2023

Keywords

Examples

			Triangle T(n, k) starts:
[0] 1;
[1] 0,     2;
[2] 0,     2,     3;
[3] 0,     4,     9,     4;
[4] 0,    12,    33,    24,     5;
[5] 0,    48,   150,   140,    50,     6;
[6] 0,   240,   822,   900,   425,    90,    7;
[7] 0,  1440,  5292,  6496,  3675,  1050,  147,   8;
[8] 0, 10080, 39204, 52528, 33845, 11760, 2254, 224, 9;
		

Crossrefs

Cf. A208529 (column 1), A006002 (subdiagonal), A000774 (row sums).
Cf. A069138 (Stirling2 counterpart), A360205 (Lah counterpart).

Programs

  • Maple
    T := (n, k) -> (k + 1)*abs(Stirling1(n, k)):
    for n from 0 to 8 do seq(T(n, k), k = 0..n) od;

A099904 Numerator of sum of all matrix elements of N X N matrix M(i,j) = i^3+j^3, (i,j = 1..n) divided by n!.

Original entry on oeis.org

2, 18, 36, 100, 75, 147, 98, 18, 45, 605, 121, 169, 1183, 7, 1, 289, 289, 361, 361, 1, 11, 5819, 529, 1, 13, 13, 1, 841, 841, 961, 961, 1, 17, 17, 1, 1369, 26011, 19, 1, 1681, 1681, 1849, 1849, 1, 23, 50807, 2209, 1, 1, 1, 1, 2809, 2809, 1, 1, 1, 29, 100949, 3481, 3721
Offset: 1

Views

Author

Alexander Adamchuk, Oct 29 2004

Keywords

Comments

Sum M(i,j) (i,j = 1..n) is A099903(n). a(n) is an irregular sequence with highest champions belonging to Pentagonal pyramidal numbers n^2*(n+1)/2 (A002411) and n/2*(n+1)^2 (A006002).

Examples

			A099903(n)/n! begins 2, 18, 36, 100/3, 75/4, 147/20, 98/45, 18/35, 45/448, ... So a(6) = 147.
		

Crossrefs

Programs

  • Mathematica
    Table[ Numerator[ Sum[(i^3 + j^3), {i, n}, {j, n}]/n! ], {n, 60}]

Formula

a(n) = Numerator[1/n!*Sum[Sum[(i^3+j^3), {i, 1, n}], {j, 1, n}]] a(n) = Numerator[1/2 * (n^3)*(n+1)^2 /n! ].

A109454 Sum of non-Fibonacci numbers between successive Fibonacci numbers: a(n) = Sum_{k=F(n)+1..F(n+1)-1} k.

Original entry on oeis.org

0, 0, 0, 0, 4, 13, 42, 119, 330, 890, 2376, 6291, 16588, 43615, 114492, 300236, 786828, 2061233, 5398470, 14136759, 37015990, 96917974, 253748880, 664346375, 1739318904, 4553656703, 11921726232, 31211643384, 81713400340, 213928875445, 560073740226
Offset: 0

Views

Author

Amarnath Murthy, Aug 27 2005

Keywords

Examples

			F(5) = F(4) + 1 = 4.
F(6) = (F(5) + 1) + (F(5) + 2) = 6+7 = 13.
F(7) = 9+10+11+12 = 42.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^4*(x^2 - x - 4)/((x + 1) (x^2 - 3 x + 1) (x^2 + x - 1)), {x, 0, 30}], x] (* Michael De Vlieger, Jul 08 2021 *)
    Total[Range[#[[1]]+1,#[[2]]-1]]&/@Partition[Fibonacci[Range[0,40]],2,1] (* or *) LinearRecurrence[{3,1,-5,-1,1},{0,0,0,0,4,13,42},40] (* Harvey P. Dale, Sep 30 2024 *)
  • PARI
    concat([0,0,0,0], Vec(x^4*(x^2-x-4) / ((x+1)*(x^2-3*x+1)*(x^2+x-1)) + O(x^100))) \\ Colin Barker, Mar 26 2015

Formula

a(n) = Fibonacci(n+2)*(Fibonacci(n-1)-1)/2, n>1. - Vladeta Jovovic, Aug 27 2005
a(n) = 3*a(n-1) + a(n-2) - 5*a(n-3) - a(n-4) + a(n-5) for n>6. - Colin Barker, Mar 26 2015
G.f.: x^4*(x^2-x-4) / ((x+1)*(x^2-3*x+1)*(x^2+x-1)). - Colin Barker, Mar 26 2015

Extensions

More terms from Franklin T. Adams-Watters, Jun 06 2006

A139309 Array by antidiagonals, sum of non-k-gonal numbers between consecutive k-gonal numbers.

Original entry on oeis.org

0, 0, 2, 0, 5, 9, 0, 9, 26, 24, 0, 14, 51, 75, 50, 0, 20, 84, 153, 164, 90, 0, 27, 125, 258, 342, 305, 147, 0, 35, 174, 390, 584, 645, 510, 224, 0, 44, 231, 549, 890, 1110, 1089, 791, 324, 0, 54, 296, 735, 1260, 1700, 1884, 1701, 1160, 450, 0, 65, 369, 948, 1694
Offset: 0

Views

Author

Jonathan Vos Post, Jun 07 2008

Keywords

Comments

The n=1 column is A000096(k) = n*(n+3)/2. The k=3 row is the sum of nontriangular numbers between successive triangular numbers (A006002) = the sum of n consecutive integers beginning with (n-th triangular number)+1 = (n*(n+1)^2)/2. The k=4 row is the sum of nonsquares between successive squares (A048395) = 2*n^3 + 2*n^2 + n. The k=5 row is the sum of non-pentagonal numbers between successive pentagonal numbers. The k-th row is the sum of non-k-gonal numbers between successive k-gonal numbers. Each column is a quadratic sequence. Each row is a cubic sequence.

Examples

			The array begins:
========================================================================
...|.n=0.|.n=1.|.n=2.|.n=3.|.n=4.|.n=5.|.n=6.|.n=7.|.n=8.|.n=9.|.in.OEIS
====|=====|=====|=====|=====|=====|=====|=====|=====|=====|=====|========
k=3.|..0..|..2..|..9..|..24.|..50.|..90.|.147.|.224.|.324.|.450.|.A006002
k=4.|..0..|..5..|.26..|..75.|.164.|.305.|.510.|.791.|1160.|1629.|.A048395
k=5.|..0..|..9..|.51..|.153.|.342.|.645.|1089.|...................not.yet
k=6.|..0..|.14..|.84..|.258.|.584.|...............................not.yet
k=7.|..0..|.20..|125..|.390.|.....................................not.yet
k=8.|..0..|.27..|174..|...........................................not.yet
k=9.|..0..|.35..|231..|...........................................not.yet
k=10|..0..|.44..|296..|...........................................not.yet
========================================================================
		

Crossrefs

Programs

  • Maple
    A139309 := proc(k,n) n*(k-2)*((k-2)*n^2+1+2*n)/2 ; end: for d from 3 to 16 do for n from 0 to d-3 do printf("%d,", A139309(d-n,n)) ; od: od: # R. J. Mathar, Jun 12 2008

Formula

T(k,n) = n(k-2)((k-2)n^2+1+2n)/2. - R. J. Mathar, Jun 12 2008

Extensions

More terms from R. J. Mathar, Jun 12 2008

A181956 Smallest prime greater than n*(n+1)^2/2.

Original entry on oeis.org

2, 3, 11, 29, 53, 97, 149, 227, 331, 457, 607, 797, 1019, 1277, 1579, 1931, 2333, 2767, 3251, 3803, 4421, 5087, 5821, 6637, 7507, 8461, 9479, 10589, 11777, 13063, 14419, 15877, 17431, 19079, 20849, 22691, 24659, 26717, 28901, 31219, 33623, 36187, 38833, 41627
Offset: 0

Views

Author

Gerasimov Sergey, Apr 03 2012

Keywords

Examples

			a(1)=2 because prime 2 > (0*(0+1)^2/2) = 0, a(2)=3 because prime 3 > (1*(1+1)^2/2) = 2, a(3)=11 because prime 11 > (2*(2+1)^2/2) = 9.
		

Crossrefs

Programs

Formula

a(n) ~ n^3 / 2. - Charles R Greathouse IV, Aug 03 2012

A182091 Numbers n such that (n-1)*n^2/2-1 is prime.

Original entry on oeis.org

4, 6, 8, 10, 13, 17, 18, 21, 22, 25, 30, 34, 36, 38, 41, 42, 45, 46, 56, 57, 58, 62, 64, 69, 70, 72, 74, 86, 88, 101, 105, 113, 114, 116, 120, 122, 126, 132, 133, 141, 157, 158, 174, 176, 181, 182, 186, 192, 198, 200, 205, 216, 217, 221, 224, 240, 253, 254
Offset: 1

Views

Author

Gerasimov Sergey, Apr 11 2012

Keywords

Examples

			a(1)=4 because (4-1)*4^2/2-1=23 is prime, a(2)=6 because (6-1)*6^2/2-1=89 is prime.
		

Crossrefs

Cf. A006002.

Programs

  • Magma
    [n: n in [1..300] |IsPrime((n-1)*n^2 div 2-1)]; // Vincenzo Librandi, Aug 21 2017
  • Mathematica
    Select[Range[300], PrimeQ[(# - 1)*#^2/2 - 1] &] (* T. D. Noe, Apr 11 2012 *)
  • PARI
    is(n)=isprime((n-1)*n^2/2-1) \\ Charles R Greathouse IV, Jun 13 2017
    

A255687 a(n) = n*(n + 1)*(7*n + 11)/6.

Original entry on oeis.org

0, 6, 25, 64, 130, 230, 371, 560, 804, 1110, 1485, 1936, 2470, 3094, 3815, 4640, 5576, 6630, 7809, 9120, 10570, 12166, 13915, 15824, 17900, 20150, 22581, 25200, 28014, 31030, 34255, 37696, 41360, 45254, 49385, 53760, 58386, 63270, 68419, 73840, 79540, 85526
Offset: 0

Views

Author

Luce ETIENNE, Mar 02 2015

Keywords

Comments

This sequence gives the number of triangles of all sizes in (3*n^2+2*n)-polyiamonds in a pentagonal or heptagonal configuration.
Also sum of 2*n*(n+1)*(n+2)/3 triangles oriented in one direction and n*(n+1)^2/2 oriented in the opposite direction.

Crossrefs

First bisection of A212977.
Partial sums of A179986.

Programs

  • Magma
    [n*(n+1)*(7*n+11)/6: n in [0..50]]; // Bruno Berselli, Mar 02 2015
    
  • Maple
    A255687:=n->n*(n+1)*(7*n+11)/6: seq(A255687(n), n=0..50); # Wesley Ivan Hurt, Mar 03 2015
  • Mathematica
    Table[n (n + 1) (7 n + 11)/6, {n, 0, 50}] (* Bruno Berselli, Mar 02 2015 *)
    LinearRecurrence[{4,-6,4,-1},{0,6,25,64},50] (* Harvey P. Dale, Jul 17 2015 *)
  • PARI
    vector(50, n, n--; n*(n+1)*(7*n+11)/6)
    
  • PARI
    concat(0, Vec(x*(x+6)/(x-1)^4 + O(x^100))) \\ Colin Barker, Mar 02 2015
    
  • Sage
    [n*(n+1)*(7*n+11)/6 for n in (0..50)] # Bruno Berselli, Mar 02 2015

Formula

a(n) = (1/2)*(Sum_{j=0..n} (n+1-j)*(3*n-j) + Sum_{j=0..n-1} (n-j)*(3*n+1-3*j)).
From Colin Barker, Mar 02 2015: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: x*(x + 6)/(x - 1)^4. (End)
a(n) = -A007584(-n-1). - Bruno Berselli, Mar 02 2015
From Elmo R. Oliveira, Aug 18 2025: (Start)
E.g.f.: exp(x)*x*(36 + 39*x + 7*x^2)/6.
a(n) = A212977(2*n). (End)
Previous Showing 41-50 of 59 results. Next