cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 160 results. Next

A245567 Number of antichain covers of a labeled n-set such that for every two distinct elements in the n-set, there is a set in the antichain cover containing one of the elements but not the other.

Original entry on oeis.org

2, 1, 1, 5, 76, 5993, 7689745, 2414465044600, 56130437141763247212112, 286386577668298408602599478477358234902247
Offset: 0

Views

Author

Patrick De Causmaecker, Jul 25 2014

Keywords

Comments

This is the number of antichain covers such that the induced partition contains only singletons. The induced partition of {{1,2},{2,3},{1,3},{3,4}} is {{1},{2},{3},{4}}, while the induced partition of {{1,2,3},{2,3,4}} is {{1},{2,3},{4}}.
This sequence is related to A006126. See 1st formula.
The sequence is also related to Dedekind numbers through Stirling numbers of the second kind. See 2nd formula.
Sets of subsets of the described type are said to be T_0. - Gus Wiseman, Aug 14 2019

Examples

			For n = 0, a(0) = 2 by the antisets {}, {{}}.
For n = 1, a(1) = 1 by the antiset {{1}}.
For n = 2, a(2) = 1 by the antiset {{1},{2}}.
For n = 3, a(3) = 5 by the antisets {{1},{2},{3}}, {{1,2},{1,3}}, {{1,2},{2,3}}, {{1,3},{2,3}}, {{1,2},{1,3},{2,3}}.
		

Crossrefs

Cf. A000372 (Dedekind numbers), A006126 (Number of antichain covers of a labeled n-set).
Sequences counting and ranking T_0 structures:
A000112 (unlabeled topologies),
A001035 (topologies),
A059201 (covering set-systems),
A245567 (antichain covers),
A309615 (covering set-systems closed under intersection),
A316978 (factorizations),
A319559 (unlabeled set-systems by weight),
A319564 (integer partitions),
A319637 (unlabeled covering set-systems),
A326939 (covering sets of subsets),
A326940 (set-systems),
A326941 (sets of subsets),
A326943 (covering sets of subsets closed under intersection),
A326944 (covering sets of subsets with {} and closed under intersection),
A326945 (sets of subsets closed under intersection),
A326946 (unlabeled set-systems),
A326947 (BII-numbers of set-systems),
A326948 (connected set-systems),
A326949 (unlabeled sets of subsets),
A326950 (antichains),
A326959 (set-systems closed under intersection),
A327013 (unlabeled covering set-systems closed under intersection),
A327016 (BII-numbers of topologies).

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[Subsets[Subsets[Range[n]]],Union@@#==Range[n]&&stableQ[#,SubsetQ]&&UnsameQ@@dual[#]&]],{n,0,3}] (* Gus Wiseman, Aug 14 2019 *)

Formula

A000372(n) = Sum_{k=0..n} S(n+1,k+1)*a(k).
a(n) = A006126(n) - Sum_{k=1..n-1} S(n,k)*a(k).
Were n > 0 and S(n,k) is the number of ways to partition a set of n elements into k nonempty subsets.
Inverse binomial transform of A326950, if we assume a(0) = 1. - Gus Wiseman, Aug 14 2019

Extensions

Definition corrected by Patrick De Causmaecker, Oct 10 2014
a(9), based on A000372, from Patrick De Causmaecker, Jun 01 2023

A304382 Number of z-trees summing to n. Number of connected strict integer partitions of n with pairwise indivisible parts and clutter density -1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 1, 3, 2, 4, 3, 5, 2, 5, 4, 6, 3, 7, 6, 8, 4, 9, 8, 13, 9, 15, 8, 14, 12, 16, 12, 20, 20, 24, 15, 27, 20, 33, 27, 35
Offset: 1

Views

Author

Gus Wiseman, May 21 2018

Keywords

Comments

Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor. For example, G({6,14,15,35}) is a 4-cycle. A multiset S is said to be connected if G(S) is a connected graph.
The clutter density of a multiset S of positive integers is Sum_{s in S} (omega(s) - 1) - omega(LCM(S)).

Examples

			The a(30) = 8 z-trees together with the corresponding multiset systems are the following.
       (30): {{1,2,3}}
     (26,4): {{1,6},{1,1}}
     (22,8): {{1,5},{1,1,1}}
     (21,9): {{2,4},{2,2}}
    (16,14): {{1,1,1,1},{1,4}}
   (15,9,6): {{2,3},{2,2},{1,2}}
  (14,10,6): {{1,4},{1,3},{1,2}}
  (12,10,8): {{1,1,2},{1,3},{1,1,1}}
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
    zreeQ[s_]:=And[Length[s]>=2,zensity[s]==-1];
    strConnAnti[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&&Length[zsm[#]]==1&&Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={}&];
    Table[Length[Select[strConnAnti[n],Length[#]==1||zreeQ[#]&]],{n,20}]

A306505 Number of non-isomorphic antichains of nonempty subsets of {1,...,n}.

Original entry on oeis.org

1, 2, 4, 9, 29, 209, 16352, 490013147, 1392195548889993357, 789204635842035040527740846300252679
Offset: 0

Views

Author

Gus Wiseman, Feb 20 2019

Keywords

Comments

The spanning case is A006602 or A261005. The labeled case is A014466.
From Petros Hadjicostas, Apr 22 2020: (Start)
a(n) is the number of "types" of log-linear hierarchical models on n factors in the sense of Colin Mallows (see the emails to N. J. A. Sloane).
Two hierarchical models on n factors belong to the same "type" iff one can obtained from the other by a permutation of the factors.
The total number of hierarchical log-linear models on n factors (in all "types") is given by A014466(n) = A000372(n) - 1.
The name of a hierarchical log-linear model on factors is based on the collection of maximal interaction terms, which must be an antichain (by the definition of maximality).
In his example on p. 1, Colin Mallows groups the A014466(3) = 19 hierarchical log-linear models on n = 3 factors x, y, z into a(3) = 9 types. See my example below for more details. (End)
First differs from A348260(n + 1) - 1 at a(5) = 209, A348260(6) - 1 = 232. - Gus Wiseman, Nov 28 2021

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(3) = 9 antichains:
  {}  {}     {}         {}
      {{1}}  {{1}}      {{1}}
             {{1,2}}    {{1,2}}
             {{1},{2}}  {{1},{2}}
                        {{1,2,3}}
                        {{1},{2,3}}
                        {{1},{2},{3}}
                        {{1,3},{2,3}}
                        {{1,2},{1,3},{2,3}}
From _Petros Hadjicostas_, Apr 23 2020: (Start)
We expand _Colin Mallows_'s example from p. 1 of his list of 1991 emails. For n = 3, we have the following a(3) = 9 "types" of log-linear hierarchical models:
Type 1: ( ), Type 2: (x), (y), (z), Type 3: (x,y), (y,z), (z,x), Type 4: (x,y,z), Type 5: (xy), (yz), (zx), Type 6: (xy,z), (yz,x), (zx,y), Type 7: (xy,xz), (yx,yz), (zx,zy), Type 8: (xy,yz,zx), Type 9: (xyz).
For each model, the name only contains the maximal terms. See p. 36 in Wickramasinghe (2008) for the full description of the 19 models.
Strictly speaking, I should have used set notation (rather than parentheses) for the name of each model, but I follow the tradition of the theory of log-linear models. In addition, in an interaction term such as xy, the order of the factors is irrelevant.
Models in the same type essentially have similar statistical properties.
For example, models in Type 7 have the property that two factors are conditionally independent of one another given each level (= category) of the third factor.
Models in Type 6 are such that two factors are jointly independent from the third one. (End)
		

Crossrefs

Formula

a(n) = A003182(n) - 1.
Partial sums of A006602 minus 1.

Extensions

a(8) from A003182. - Bartlomiej Pawelski, Nov 27 2022
a(9) from A003182. - Dmitry I. Ignatov, Nov 27 2023

A325107 Number of subsets of {1...n} with no binary containments.

Original entry on oeis.org

1, 2, 4, 5, 10, 13, 18, 19, 38, 52, 77, 83, 133, 147, 166, 167, 334, 482, 764, 848, 1465, 1680, 1987, 2007, 3699, 4413, 5488, 5572, 7264, 7412, 7579, 7580, 15160, 22573, 37251, 42824, 77387, 92863, 116453, 118461, 227502, 286775, 382573, 392246, 555661, 574113
Offset: 0

Views

Author

Gus Wiseman, Mar 28 2019

Keywords

Comments

A pair of positive integers is a binary containment if the positions of 1's in the reversed binary expansion of the first are a subset of the positions of 1's in the reversed binary expansion of the second.

Examples

			The a(0) = 1 through a(6) = 18 subsets:
  {}  {}   {}     {}     {}       {}       {}
      {1}  {1}    {1}    {1}      {1}      {1}
           {2}    {2}    {2}      {2}      {2}
           {1,2}  {3}    {3}      {3}      {3}
                  {1,2}  {4}      {4}      {4}
                         {1,2}    {5}      {5}
                         {1,4}    {1,2}    {6}
                         {2,4}    {1,4}    {1,2}
                         {3,4}    {2,4}    {1,4}
                         {1,2,4}  {2,5}    {1,6}
                                  {3,4}    {2,4}
                                  {3,5}    {2,5}
                                  {1,2,4}  {3,4}
                                           {3,5}
                                           {3,6}
                                           {5,6}
                                           {1,2,4}
                                           {3,5,6}
		

Crossrefs

Programs

  • Maple
    c:= proc() option remember; local i, x, y;
          x, y:= map(n-> Bits[Split](n), [args])[];
          for i to nops(x) do
            if x[i]=1 and y[i]=0 then return false fi
          od; true
        end:
    b:= proc(n, s) option remember; `if`(n=0, 1, b(n-1, s)+
         `if`(ormap(i-> c(n, i), s), 0, b(n-1, s union {n})))
        end:
    a:= n-> b(n, {}):
    seq(a(n), n=0..34);  # Alois P. Heinz, Mar 28 2019
  • Mathematica
    binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[Subsets[Range[n]],stableQ[#,SubsetQ[binpos[#1],binpos[#2]]&]&]],{n,0,13}]

Formula

a(2^n - 1) = A014466(n).

Extensions

a(16)-a(45) from Alois P. Heinz, Mar 28 2019

A327351 Triangle read by rows where T(n,k) is the number of antichains of nonempty sets covering n vertices with vertex-connectivity exactly k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 4, 3, 2, 0, 30, 40, 27, 17, 0, 546, 1365, 1842, 1690, 1451, 0, 41334
Offset: 0

Views

Author

Gus Wiseman, Sep 09 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other. It is covering if there are no isolated vertices.
The vertex-connectivity of a set-system is the minimum number of vertices that must be removed (along with any empty or duplicate edges) to obtain a non-connected set-system or singleton. Note that this means a single node has vertex-connectivity 0.
If empty edges are allowed, we have T(0,0) = 2.

Examples

			Triangle begins:
    1
    1    0
    1    1    0
    4    3    2    0
   30   40   27   17    0
  546 1365 1842 1690 1451    0
		

Crossrefs

Row sums are A307249, or A006126 if empty edges are allowed.
Column k = 0 is A120338, if we assume A120338(0) = A120338(1) = 1.
Column k = 1 is A327356.
Column k = n - 1 is A327020.
The unlabeled version is A327359.
The version for vertex-connectivity >= k is A327350.
The version for spanning edge-connectivity is A327352.
The version for non-spanning edge-connectivity is A327353, with covering case A327357.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Union@@#==Range[n]&&vertConnSys[Range[n],#]==k&]],{n,0,4},{k,0,n}]

Extensions

a(21) from Robert Price, May 28 2021

A304985 Number of labeled clutters (connected antichains) spanning n vertices with singleton edges allowed.

Original entry on oeis.org

1, 1, 4, 40, 1344, 203136, 495598592, 309065330371840, 14369391920653644779049472
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Comments

Only the non-singleton edges are required to form an antichain.

Examples

			The a(2) = 4 clutters:
{{1,2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
		

Crossrefs

Formula

For n > 1, a(n) = A048143(n) * 2^n.

A304996 Number of unlabeled antichains of finite sets spanning up to n vertices with singleton edges allowed.

Original entry on oeis.org

1, 2, 6, 24, 166, 3266, 826308
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Examples

			Non-isomorphic representatives of the a(3) = 24 antichains:
{}
{{1}}
{{1,2}}
{{1,2,3}}
{{1},{2}}
{{2},{1,2}}
{{3},{1,2}}
{{3},{1,2,3}}
{{1,3},{2,3}}
{{1},{2},{3}}
{{1},{2},{1,2}}
{{2},{3},{1,3}}
{{2},{3},{1,2,3}}
{{3},{1,2},{2,3}}
{{3},{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
{{1},{2},{3},{2,3}}
{{1},{2},{3},{1,2,3}}
{{2},{3},{1,2},{1,3}}
{{2},{3},{1,3},{2,3}}
{{3},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,3},{2,3}}
{{2},{3},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,2},{1,3},{2,3}}
		

Crossrefs

Extensions

a(5)-a(6) from Andrew Howroyd, Aug 14 2019

A317635 Number of connected vertex sets of clutters (connected antichains) spanning n vertices.

Original entry on oeis.org

1, 0, 1, 14, 486, 71428
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2018

Keywords

Comments

A connected vertex set in a clutter is any union of a connected subset of the edges.

Examples

			There are four connected vertex sets of {{1,2},{1,3},{2,3}}, namely {1,2,3}, {1,2}, {1,3}, {2,3}; there are three connected vertex sets of {{1,2},{1,3}}, {{1,2},{2,3}}, and {{1,3},{2,3}} each; and there is one connected vertex set of {{1,2,3}}. So we have a total of a(3) = 4 + 3 * 3 + 1 = 14 connected vertex sets.
		

Crossrefs

Programs

  • Mathematica
    nn=5;
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],multijoin@@s[[c[[1]]]]]]]]];
    clutQ[eds_]:=And[UnsameQ@@eds,!Apply[Or,Outer[#1=!=#2&&Complement[#1,#2]=={}&,eds,eds,1],{0,1}],Length[csm[eds]]==1];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    swell[c_]:=Union@@FixedPointList[Union[ReplaceList[#1,{_,a:{_,x_,_},_,b:{_,x_,_},_}:>Union[a,b]]]&,c]
    Table[Sum[Length[swell[c]],{c,Select[stableSets[Select[Subsets[Range[n]],Length[#]>1&],Complement[#1,#2]=={}&],And[Union@@#==Range[n],clutQ[#]]&]}],{n,nn}]

A319639 Number of antichain covers of n vertices by distinct sets whose dual is also an antichain of distinct sets.

Original entry on oeis.org

1, 1, 1, 2, 20, 2043
Offset: 0

Views

Author

Gus Wiseman, Sep 25 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.

Examples

			The a(1) = 1 through a(3) = 2 antichain covers:
1: {{1}}
2: {{1},{2}}
3: {{1},{2},{3}}
   {{1,2},{1,3},{2,3}}
		

Crossrefs

A321679 Number of non-isomorphic weight-n antichains (not necessarily strict) of sets.

Original entry on oeis.org

1, 1, 3, 5, 12, 19, 45, 75, 170, 314, 713
Offset: 0

Views

Author

Gus Wiseman, Nov 16 2018

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 19 antichains:
  {{1}}  {{1,2}}    {{1,2,3}}      {{1,2,3,4}}        {{1,2,3,4,5}}
         {{1},{1}}  {{1},{2,3}}    {{1,2},{1,2}}      {{1},{2,3,4,5}}
         {{1},{2}}  {{1},{1},{1}}  {{1},{2,3,4}}      {{1,2},{3,4,5}}
                    {{1},{2},{2}}  {{1,2},{3,4}}      {{1,4},{2,3,4}}
                    {{1},{2},{3}}  {{1,3},{2,3}}      {{1},{1},{2,3,4}}
                                   {{1},{1},{2,3}}    {{1},{2,3},{2,3}}
                                   {{1},{2},{3,4}}    {{1},{2},{3,4,5}}
                                   {{1},{1},{1},{1}}  {{1},{2,3},{4,5}}
                                   {{1},{1},{2},{2}}  {{1},{2,4},{3,4}}
                                   {{1},{2},{2},{2}}  {{1},{1},{1},{2,3}}
                                   {{1},{2},{3},{3}}  {{1},{2},{2},{3,4}}
                                   {{1},{2},{3},{4}}  {{1},{2},{3},{4,5}}
                                                      {{1},{1},{1},{1},{1}}
                                                      {{1},{1},{2},{2},{2}}
                                                      {{1},{2},{2},{2},{2}}
                                                      {{1},{2},{2},{3},{3}}
                                                      {{1},{2},{3},{3},{3}}
                                                      {{1},{2},{3},{4},{4}}
                                                      {{1},{2},{3},{4},{5}}
		

Crossrefs

Previous Showing 61-70 of 160 results. Next