cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 56 results. Next

A188917 Where powers of 2 occur in the union of squares and powers of 2.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 11, 15, 20, 27, 37, 51, 70, 97, 135, 189, 264, 371, 521, 734, 1034, 1459, 2059, 2908, 4108, 5805, 8205, 11599, 16398, 23185, 32783, 46356, 65552, 92698, 131089, 185381, 262162, 370746, 524307, 741475, 1048596, 1482931, 2097173, 2965842, 4194326, 5931664, 8388631
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 14 2011

Keywords

Comments

A188915(a(n)) = A000079(n); A188915(A188916(n)) = A000290(n).

Crossrefs

Programs

  • Haskell
    a188917 n = a188917_list !! n
    a188917_list = filter ((== 1) . a209229. a188915) [0..]
    -- Reinhard Zumkeller, May 19 2015
    
  • Maple
    seq(floor((n+1)/2) + floor(2^(n/2)), n=0..100); # Robert Israel, Jun 13 2019
  • Mathematica
    Table[Floor[(n+1)/2] + Floor[2^(n/2)], {n, 0, 50}] (* Paolo Xausa, Oct 01 2024 *)
  • Python
    from math import isqrt
    def A188917(n): return (n+1>>1)+isqrt(1<Chai Wah Wu, Oct 01 2024

Formula

a(n) = floor((n+1)/2) + floor(2^(n/2)). - Robert Israel, Jun 13 2019

A073113 a(n) = 2^(2^n + n).

Original entry on oeis.org

2, 8, 64, 2048, 1048576, 137438953472, 1180591620717411303424, 43556142965880123323311949751266331066368
Offset: 0

Views

Author

Joe Mathes (oldschoolchaz(AT)hotmail.com), Aug 19 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^(2^n + n); Array[a, 8, 0] (* Amiram Eldar, Aug 14 2022 *)

Formula

a(n) = 2^A006127(n) = A000079(n)*A001146(n). - Amiram Eldar, Aug 14 2022

A134466 See A134457.

Original entry on oeis.org

0, 1, 1, 2, 6, 6, 11, 22, 44, 92, 92, 157, 311, 622, 1239, 2478, 4956, 9912, 19832, 19832, 36217, 72058, 144061, 288122, 576123, 1152239, 2304478, 4608943
Offset: 1

Views

Author

David W. Wilson, Dec 17 2007

Keywords

Comments

Note that a(n) = a(n-1) for n = [1,] 3, 6, 11, 20,... = A006127(2^k + k) (conjectured); this corresponds to the case where the string c (see A134457) satisfies c(n)="0".c(n-1) (pre-pended "0"). The next string c(n+1) is obtained by inserting "0" after the first "1" and adding 1 (except for c(4) where both of these operations are equivalent and only one must be performed). - M. F. Hasler, Dec 17 2007

A162574 Primes of the form 2^x+x+y+2^y, with x and y integers of any sign.

Original entry on oeis.org

2, 7, 17, 23, 31, 43, 71, 73, 107, 541, 2129, 4111, 4243, 9239, 18457, 32789, 32803, 65563, 65687, 73757, 135197, 147487, 264221, 589859, 786469, 1048633, 1049117, 4194329, 4194847, 4227109, 8388637, 8392739, 8405029, 8650793, 16908329
Offset: 1

Views

Author

Keywords

Examples

			a(1) = A006127(1)+A006127(1) =2. a(2) = A006127(1)+A006127(3)=7.
a(3) = A006127(4)+A006127(3) =17. a(4) = A006127(5)+A006127(2) = 23.
		

Crossrefs

Programs

  • Mathematica
    f[x_,y_]:=2^x+x+y+2^y; lst={};Do[Do[p=f[x,y];If[PrimeQ[p],AppendTo[lst, p]],{y,-5!,6!}],{x,-5!,6!}];Take[Union[lst],5! ]

Extensions

Examples added by R. J. Mathar, Sep 17 2009

A198061 Array read by antidiagonals, m>=0, n>=0, A(m,n) = sum{k=0..n} sum{j=0..m} sum{i=0..m} (-1)^(j+i)*C(i,j)*n^j*k^(m-j).

Original entry on oeis.org

1, 0, 2, 0, 2, 3, 0, 2, 6, 4, 0, 2, 11, 12, 5, 0, 2, 20, 32, 20, 6, 0, 2, 37, 84, 70, 30, 7, 0, 2, 70, 224, 240, 130, 42, 8, 0, 2, 135, 612, 834, 550, 217, 56, 9, 0, 2, 264, 1712, 2968, 2354, 1092, 336, 72, 10, 0, 2, 521, 4884, 10826, 10310, 5551, 1960, 492
Offset: 0

Views

Author

Peter Luschny, Nov 02 2011

Keywords

Examples

			m\n  [0] [1]  [2]   [3]    [4]     [5]    [6]
----------------------------------------------
[0]   1   2    3     4      5       6       7    A000027
[1]   0   2    6    12     20      30      42    A002378
[2]   0   2   11    32     70     130     217    A033994
[3]   0   2   20    84    240     550    1092    A098077
[4]   0   2   37   224    834    2354    5551
[5]   0   2   70   612   2968   10310   28854
		

Crossrefs

Cf. A198060.

Programs

  • Maple
    A198061 := proc(m, n) local i,j,k,pow;
    pow := (a,b) -> if a=0 and b=0 then 1 else a^b fi;
    add(add(add((-1)^(j+i)*binomial(i,j)*pow(n,j)*pow(k,m-j),i=0..m),j=0..m),k=0..n) end:
    for m from 0 to 8 do lprint(seq(A198061(m,n), n=0..6)) od;
  • Mathematica
    Unprotect[Power]; 0^0 = 1; Protect[Power]; a[m_, n_] :=  Sum[(-1)^(j+i)*Binomial[i, j]*n^j*k^(m-j) , {i, 0, m}, {j, 0, m}, {k, 0, n}]; Table[a[m-n, n], {m, 0, 10}, {n, 0, m}] // Flatten (* Jean-François Alcover, Jul 26 2013 *)

Formula

A198061(n,2) = A006127(n+1)

A024038 a(n) = 4^n - n^2.

Original entry on oeis.org

1, 3, 12, 55, 240, 999, 4060, 16335, 65472, 262063, 1048476, 4194183, 16777072, 67108695, 268435260, 1073741599, 4294967040, 17179868895, 68719476412, 274877906583, 1099511627376, 4398046510663, 17592186043932
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [ 4^n-n^2: n in [0..30] ]; // Vincenzo Librandi, Dec 25 2010
    
  • Mathematica
    Table[4^n-n^2,{n,0,30}] (* or *) LinearRecurrence[{7,-15,13,-4},{1,3,12,55},30] (* Harvey P. Dale, Sep 14 2013 *)
  • SageMath
    [4^n-n^2 for n in range(31)] # G. C. Greubel, Aug 18 2023

Formula

a(n) = A000325(n)*A006127(n). - Reinhard Zumkeller, Apr 10 2010
G.f.: (1 - 4*x + 6*x^2 + 3*x^3)/((1 - x)^3*(1 - 4*x)). - Colin Barker, May 29 2012
E.g.f.: exp(4*x) - x*(1 + x)*exp(x). - G. C. Greubel, Aug 18 2023

A124469 Triangle, read by rows, where row n equals the inverse binomial transform of column n in the rectangular table A124460.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 8, 6, 1, 1, 22, 28, 11, 1, 1, 65, 120, 81, 20, 1, 1, 209, 500, 494, 219, 37, 1, 1, 730, 2088, 2733, 1812, 578, 70, 1, 1, 2743, 8884, 14411, 12904, 6299, 1518, 135, 1, 1, 10958, 38803, 74484, 84424, 56590, 21384, 4007, 264, 1, 1, 46057, 174366
Offset: 0

Views

Author

Paul D. Hanna, Nov 03 2006

Keywords

Comments

In table A124460, the g.f. of row n, R_n(y), simultaneously satisfies: R_n(y) = Sum_{k>=0} y^k * R_k(y)^n for n>=0.

Examples

			Triangle begins:
1;
1, 1;
1, 3, 1;
1, 8, 6, 1;
1, 22, 28, 11, 1;
1, 65, 120, 81, 20, 1;
1, 209, 500, 494, 219, 37, 1;
1, 730, 2088, 2733, 1812, 578, 70, 1;
1, 2743, 8884, 14411, 12904, 6299, 1518, 135, 1;
1, 10958, 38803, 74484, 84424, 56590, 21384, 4007, 264, 1;
1, 46057, 174366, 383391, 526121, 453082, 238853, 72076, 10693, 521, 1;
		

Crossrefs

Cf. A124470 (row sums), A006127 (diagonal T(n+1, n)); A124460 (table).

Programs

  • PARI
    {T(n,k)=local(R=vector(n+2,r,vector(n+2,c,binomial(r+c-2,c-1)))); for(i=0,n,for(r=0,n,R[r+1]=Vec(sum(c=0,n,x^c*Ser(R[c+1])^r+O(x^(n+1)))))); Vec(subst(Ser(vector(n+1,j,R[j][n+1])),x,x/(1+x))/(1+x))[k+1]}

Formula

Secondary diagonal T(n+1,n) = 2^n + n = A006127(n).

A135227 Triangle A000012 * A135225, read by rows.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 3, 3, 1, 5, 4, 6, 4, 1, 6, 5, 10, 10, 5, 1, 7, 6, 15, 20, 15, 6, 1, 8, 7, 21, 35, 35, 21, 7, 1, 9, 8, 28, 56, 70, 56, 28, 8, 1, 10, 9, 36, 84, 126, 126, 84, 36, 9, 1, 11, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 12, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 0

Views

Author

Gary W. Adamson, Nov 23 2007

Keywords

Comments

Row sums = A006127: (1, 3, 6, 11, 20, 37, ...).

Examples

			First few rows of the triangle:
  1;
  2, 1;
  3, 2,  1;
  4, 3,  3,  1;
  5, 4,  6,  4,  1;
  6, 5, 10, 10,  5, 1;
  7, 6, 15, 20, 15, 6, 1;
...
		

Crossrefs

Programs

  • GAP
    T:= function(n,k)
        if k=0 then return 1;
        else return Binomial(n,k);
        fi; end;
    Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 20 2019
  • Magma
    [k eq 0 select n+1 else Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 20 2019
    
  • Maple
    seq(seq( `if`(k=0, n+1, binomial(n,k)), k=0..n), n=0..12); # G. C. Greubel, Nov 20 2019
  • Mathematica
    Table[If[k==0, n+1, Binomial[n, k]], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 20 2019 *)
  • PARI
    T(n,k) = if(k==0, n+1, binomial(n,k)); \\ G. C. Greubel, Nov 20 2019
    
  • Sage
    def T(n, k):
        if (k==0): return 1
        else: return binomial(n, k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 20 2019
    

Formula

A000012 * A135225 as infinite lower triangular matrices. Left border of 1's in Pascal's Triangle (A007318) is replaced with a column of (1,2,3,...).
T(n,k) = binomial(n,k), with T(n,0) = n+1. - G. C. Greubel, Nov 20 2019

Extensions

More terms added by G. C. Greubel, Nov 20 2019

A143397 Triangle T(n,k)=number of forests of labeled rooted trees of height at most 1, with n labels and k nodes, where any root may contain >= 1 labels, n >= 0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 6, 10, 0, 1, 11, 36, 41, 0, 1, 20, 105, 230, 196, 0, 1, 37, 285, 955, 1560, 1057, 0, 1, 70, 756, 3535, 8680, 11277, 6322, 0, 1, 135, 2002, 12453, 41720, 80682, 86800, 41393, 0, 1, 264, 5347, 43008, 186669, 485982, 773724, 708948, 293608
Offset: 0

Views

Author

Alois P. Heinz, Aug 12 2008

Keywords

Examples

			T(3,2) = 6: {1,2}{3}, {1,3}{2}, {2,3}{1}, {1,2}<-3, {1,3}<-2, {2,3}<-1.
Triangle begins:
  1;
  0, 1;
  0, 1,  3;
  0, 1,  6,  10;
  0, 1, 11,  36,   41;
  0, 1, 20, 105,  230,  196;
  0, 1, 37, 285,  955, 1560,  1057;
  0, 1, 70, 756, 3535, 8680, 11277, 6322;
  ...
		

Crossrefs

Columns k=0-2: A000007, A000012, A006127. Diagonal: A000248. See also A048993, A008277, A007318, A143405 for row sums.

Programs

  • Maple
    T:= (n,k)-> add(binomial(n, k-t)*Stirling2(n-(k-t),t)*t^(k-t), t=0..k):
    seq(seq(T(n, k), k=0..n), n=0..11);
  • Mathematica
    T[n_, k_] := Sum[Binomial[n, k-t]*StirlingS2[n - (k-t), t]*t^(k-t), {t, 0, k}]; T[0, 0] = 1; T[_, 0] = 0;
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 31 2016, translated from Maple *)

Formula

T(n,k) = Sum_{t=0..k} C(n,k-t) * Stirling2(n-(k-t),t) * t^(k-t).
E.g.f.: exp(y*exp(x*y)*(exp(x)-1)). - Vladeta Jovovic, Dec 08 2008

A286228 Numbers n such that d(n) = 2^omega(n) + omega(n) where d = A000005 and omega = A001221.

Original entry on oeis.org

1, 4, 9, 12, 18, 20, 25, 28, 44, 45, 49, 50, 52, 63, 68, 75, 76, 92, 98, 99, 116, 117, 121, 124, 147, 148, 153, 164, 169, 171, 172, 175, 188, 207, 212, 236, 242, 244, 245, 261, 268, 275, 279, 284, 289, 292, 316, 325, 332, 333, 338, 356, 361, 363, 369, 387, 388, 404, 412, 423, 425, 428
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 04 2017

Keywords

Examples

			1 is in this sequence because d(1) = 1 is equal to 2^omega(1) + omega(1) = 2^0 + 0 = 1.
		

Crossrefs

Supersequence of A001248 and of A054753.
Cf. A006127.

Programs

  • Mathematica
    Select[Range@ 432, Function[f, DivisorSigma[0, #] == 2^f + f]@ PrimeNu@ # &] (* Michael De Vlieger, May 04 2017 *)
  • PARI
    isok(n) = numdiv(n) == 2^omega(n) + omega(n); \\ Michel Marcus, May 07 2017
Previous Showing 31-40 of 56 results. Next