A374513
Expansion of 1/(1 - 4*x - 4*x^2)^(7/2).
Original entry on oeis.org
1, 14, 140, 1176, 8904, 62832, 421344, 2718144, 17008992, 103847744, 621292672, 3654187264, 21182563584, 121263109632, 686660004864, 3851149940736, 21416533501440, 118199459288064, 647926485764096, 3529938203545600, 19124354344775680
Offset: 0
-
a[n_]:=2^(n-4) Pochhammer[n+1, 6]*Hypergeometric2F1[(1-n)/2, -n/2, 4, 2]/45; Array[a,21,0] (* Stefano Spezia, Jul 10 2024 *)
-
a(n) = binomial(n+6, 3)/20*sum(k=0, n\2, 2^(n-k)*binomial(n+3, n-2*k)*binomial(2*k+3, k));
A260774
Certain directed lattice paths.
Original entry on oeis.org
1, 6, 33, 189, 1107, 6588, 39663, 240894, 1473147, 9058554, 55954395, 346934745, 2157989445, 13459891500, 84152389833, 527224251861, 3309194474451, 20804569738218, 130987600581699, 825796890644895, 5212349717906889, 32935490120006604, 208316726580941037
Offset: 0
-
b:= proc(x, y) option remember; `if`([x, y]=[0$2], 1,
`if`(x>0, add(b(x-1, y+j), j=-1..1), 0)+
`if`(y>0, b(x, y-1), 0)+`if`(y<0, b(x, y+1), 0))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..23); # Alois P. Heinz, Sep 21 2021
-
b[x_, y_] := b[x, y] = If[{x, y} == {0, 0}, 1,
If[x > 0, Sum[b[x - 1, y + j], {j, -1, 1}], 0] +
If[y > 0, b[x, y - 1], 0] + If[y < 0, b[x, y + 1], 0]];
a[n_] := b[n, 1];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, May 02 2022, after Alois P. Heinz *)
A102051
Matrix inverse of triangle A101275 (number of Schröder paths).
Original entry on oeis.org
1, -1, 1, 3, -4, 1, -9, 15, -7, 1, 31, -58, 36, -10, 1, -113, 229, -170, 66, -13, 1, 431, -924, 775, -372, 105, -16, 1, -1697, 3795, -3481, 1939, -691, 153, -19, 1, 6847, -15822, 15542, -9674, 4072, -1154, 210, -22, 1, -28161, 66801, -69276, 47012, -22446, 7606, -1788, 276, -25, 1
Offset: 0
Rows begin:
[1],
[ -1,1],
[3,-4,1],
[ -9,15,-7,1],
[31,-58,36,-10,1],
[ -113,229,-170,66,-13,1],
[431,-924,775,-372,105,-16,1],
[ -1697,3795,-3481,1939,-691,153,-19,1],
[6847,-15822,15542,-9674,4072,-1154,210,-22,1],...
Matrix inverse equals triangle A101275:
[1],
[1,1],
[1,4,1],
[1,13,7,1],
[1,44,34,10,1],...
-
T(n,m):=(-1)^(n-m)*(2*m+1)*(sum((binomial(k,n-k)*binomial(2*k,k-m))/(m+k+1),k,0,n)); /* Vladimir Kruchinin, Apr 18 2015 */
-
{T(n,k)=polcoeff(polcoeff(2/(2*y+(1-y)*(1+sqrt(1+4*x-4*x^2+x*O(x^n)))),n)+y*O(y^k),k)}
A110135
Square array of expansions of 1/sqrt(1-4x-4*k*x^2), read by antidiagonals.
Original entry on oeis.org
1, 2, 1, 6, 2, 1, 20, 8, 2, 1, 70, 32, 10, 2, 1, 252, 136, 44, 12, 2, 1, 924, 592, 214, 56, 14, 2, 1, 3432, 2624, 1052, 304, 68, 16, 2, 1, 12870, 11776, 5284, 1632, 406, 80, 18, 2, 1, 48620, 53344, 26840, 9024, 2332, 520, 92, 20, 2, 1, 184756, 243392, 137638, 50304
Offset: 0
As a square array, rows start
1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, ...
6, 8, 10, 12, 14, 16, ...
20, 32, 44, 56, 68, 80, ...
70, 136, 214, 304, 406, 520, ...
252, 592, 1052, 1632, 2332, 3152, ...
As a number triangle, rows start
1;
2, 1;
6, 2, 1;
20, 8, 2, 1;
70, 30, 10, 2, 1;
252, 136, 44, 12, 2, 1;
A110446
Triangle of Delannoy paths counted by number of diagonal steps not preceded by an east step.
Original entry on oeis.org
1, 2, 1, 8, 4, 1, 32, 24, 6, 1, 136, 128, 48, 8, 1, 592, 680, 320, 80, 10, 1, 2624, 3552, 2040, 640, 120, 12, 1, 11776, 18368, 12432, 4760, 1120, 168, 14, 1, 53344, 94208, 73472, 33152, 9520, 1792, 224, 16, 1, 243392, 480096, 423936, 220416, 74592, 17136
Offset: 0
Table begins
\ k...0....1....2....3....4....
n\
0 |...1
1 |...2....1
2 |...8....4....1
3 |..32...24....6....1
4 |.136..128...48....8....1
5 |.592..680..320...80...10....1
The paths ENDD, NDDE, DEND, DNDE, DDEN, DDNE each have 2 Ds not preceded by an E,
and so T(3,2)=6.
-
T[n_, k_] := SeriesCoefficient[(1-z(4 + 2*t) - z^2 (4 - 4*t - t^2))^(-1/2), {z, 0, n}, {t, 0, k}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 08 2016 *)
A260772
Certain directed lattice paths.
Original entry on oeis.org
1, 3, 10, 41, 190, 946, 4940, 26693, 147990, 837102, 4811860, 28027210, 165057100, 981177060, 5879570200, 35478788269, 215398416870, 1314794380374, 8064119033220, 49673222082782, 307163049317540, 1906066361809148, 11865666767361960, 74081851132379426
Offset: 0
- Lars Blomberg, Table of n, a(n) for n = 0..100
- M. Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, arXiv preprint arXiv:1410.5747 [math.CO], 2014.
- M. Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, Discrete Mathematics, Volume 339, Issue 3, 6 March 2016, Pages 1116-1139.
- Heba Bou KaedBey, Mark van Hoeij, and Man Cheung Tsui, Solving Third Order Linear Difference Equations in Terms of Second Order Equations, arXiv:2402.11121 [math.AC], 2024. See p. 3.
-
# A260772 satisfies a 4th-order recurrence that can be reduced
# to a 2nd-order recurrence given in this program t:
t := proc(n) options remember;
if n <= 1 then
[-1/2, 0, 1, 4][2*n+2]
else
(16*(n-2)*(2*n-3)*(5*n-2)*t(n-2) + (440*n^3-1056*n^2+724*n-144)*t(n-1))
/( n*(2*n+1)*(5*n-7) )
fi
end:
A260772 := proc(n)
t(n/2) + ( (2-2*n)*t((n-1)/2)+(n+2)*t((n+1)/2) ) / (1+5*n)
end:
seq(A260772(i),i=0..100);
# Mark van Hoeij, Jul 14 2022
-
a(n):=if n=0 then 1 else sum((-1)^j*binomial(n,j)*binomial(3*n-4*j,n-4*j+1),j,0,(n+1)/4)/n; /* Vladimir Kruchinin, Apr 04 2019 */
-
a(n) = if (n==0, 1, sum(j=0, (n+1)/4, (-1)^j*binomial(n,j)*binomial(3*n-4*j, n-4*j+1))/n); \\ Michel Marcus, Apr 05 2019
A387401
a(n) = Sum_{k=0..n} (1-i)^k * (1+i)^(n-k) * binomial(n+1,k) * binomial(n+1,n-k), where i is the imaginary unit.
Original entry on oeis.org
1, 4, 18, 80, 360, 1632, 7448, 34176, 157536, 728960, 3384128, 15754752, 73525504, 343870464, 1611288960, 7562801152, 35550504448, 167339022336, 788643765248, 3720901222400, 17573439614976, 83074892775424, 393056192851968, 1861155016212480, 8819174122700800, 41818448615636992
Offset: 0
-
[&+[2^(n-k) * Binomial(n+1,n-2*k) * Binomial(2*k+1,k): k in [0..Floor (n/2)]]: n in [0..35]]; // Vincenzo Librandi, Sep 04 2025
-
Table[Sum[2^(n-k)*Binomial[n+1,n-2*k]*Binomial[2*k+1,k],{k,0,Floor[n/2]}],{n,0,30}] (* Vincenzo Librandi, Sep 04 2025 *)
-
a(n) = sum(k=0, n\2, 2^(n-k)*binomial(n+1, n-2*k)*binomial(2*k+1, k));
A387402
a(n) = Sum_{k=0..n} (1-i)^k * (1+i)^(n-k) * binomial(n+2,k) * binomial(n+2,n-k), where i is the imaginary unit.
Original entry on oeis.org
1, 6, 32, 160, 780, 3752, 17920, 85248, 404640, 1918400, 9090048, 43064320, 204032192, 966887040, 4583424000, 21735350272, 103114538496, 489392157696, 2323701678080, 11037970513920, 52454251902976, 249373626208256, 1186024281341952, 5642924625100800, 26858183388774400, 127880625111662592
Offset: 0
-
[&+[2^(n-k) * Binomial(n+2,n-2*k) * Binomial(2*k+2,k): k in [0..Floor (n/2)]]: n in [0..35]]; // Vincenzo Librandi, Sep 04 2025
-
Table[Sum[2^(n-k)*Binomial[n+2,n-2*k]*Binomial[2*k+2,k],{k,0,Floor[n/2]}],{n,0,30}] (* Vincenzo Librandi, Sep 04 2025 *)
-
a(n) = sum(k=0, n\2, 2^(n-k)*binomial(n+2, n-2*k)*binomial(2*k+2, k));
A387403
a(n) = Sum_{k=0..n} (1-i)^k * (1+i)^(n-k) * binomial(n+3,k) * binomial(n+3,n-k), where i is the imaginary unit.
Original entry on oeis.org
1, 8, 50, 280, 1484, 7616, 38304, 190080, 934560, 4564736, 22189024, 107476096, 519180480, 2502850560, 12046666752, 57912029184, 278136798720, 1334832967680, 6402435630080, 30695114813440, 147110418036736, 704860523102208, 3376580007936000, 16172904859238400
Offset: 0
-
[&+[2^(n-k) * Binomial(n+3,n-2*k) * Binomial(2*k+3,k): k in [0..Floor (n/2)]]: n in [0..35]]; // Vincenzo Librandi, Sep 04 2025
-
Table[Sum[2^(n-k)*Binomial[n+3,n-2*k]*Binomial[2*k+3,k],{k,0,Floor[n/2]}],{n,0,30}] (* Vincenzo Librandi, Sep 04 2025 *)
-
a(n) = sum(k=0, n\2, 2^(n-k)*binomial(n+3, n-2*k)*binomial(2*k+3, k));
A387466
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 4*x - (2*k*x)^2).
Original entry on oeis.org
1, 1, 2, 1, 2, 6, 1, 2, 8, 20, 1, 2, 14, 32, 70, 1, 2, 24, 68, 136, 252, 1, 2, 38, 128, 406, 592, 924, 1, 2, 56, 212, 1096, 2332, 2624, 3432, 1, 2, 78, 320, 2566, 7632, 13964, 11776, 12870, 1, 2, 104, 452, 5320, 20092, 60864, 83848, 53344, 48620
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, 2, ...
6, 8, 14, 24, 38, 56, 78, ...
20, 32, 68, 128, 212, 320, 452, ...
70, 136, 406, 1096, 2566, 5320, 10006, ...
252, 592, 2332, 7632, 20092, 44752, 88092, ...
924, 2624, 13964, 60864, 210524, 607424, 1523724, ...
-
a(n, k) = sum(j=0, n\2, (k^2+1)^j*2^(n-2*j)*binomial(n, 2*j)*binomial(2*j, j));
Comments