cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 48 results. Next

A374513 Expansion of 1/(1 - 4*x - 4*x^2)^(7/2).

Original entry on oeis.org

1, 14, 140, 1176, 8904, 62832, 421344, 2718144, 17008992, 103847744, 621292672, 3654187264, 21182563584, 121263109632, 686660004864, 3851149940736, 21416533501440, 118199459288064, 647926485764096, 3529938203545600, 19124354344775680
Offset: 0

Views

Author

Seiichi Manyama, Jul 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=2^(n-4) Pochhammer[n+1, 6]*Hypergeometric2F1[(1-n)/2, -n/2, 4, 2]/45; Array[a,21,0] (* Stefano Spezia, Jul 10 2024 *)
  • PARI
    a(n) = binomial(n+6, 3)/20*sum(k=0, n\2, 2^(n-k)*binomial(n+3, n-2*k)*binomial(2*k+3, k));

Formula

a(0) = 1, a(1) = 14; a(n) = (2*(2*n+5)*a(n-1) + 4*(n+5)*a(n-2))/n.
a(n) = (binomial(n+6,3)/20) * Sum_{k=0..floor(n/2)} 2^(n-k) * binomial(n+3,n-2*k) * binomial(2*k+3,k).
a(n) = 2^(n-4)*Pochhammer(n+1, 6)*hypergeom([(1-n)/2, -n/2], [4], 2)/45. - Stefano Spezia, Jul 10 2024
a(n) = Sum_{k=0..n} (-4)^k * binomial(-7/2,k) * binomial(k,n-k). - Seiichi Manyama, Oct 19 2024

A260774 Certain directed lattice paths.

Original entry on oeis.org

1, 6, 33, 189, 1107, 6588, 39663, 240894, 1473147, 9058554, 55954395, 346934745, 2157989445, 13459891500, 84152389833, 527224251861, 3309194474451, 20804569738218, 130987600581699, 825796890644895, 5212349717906889, 32935490120006604, 208316726580941037
Offset: 0

Views

Author

N. J. A. Sloane, Jul 30 2015

Keywords

Comments

See Dziemianczuk (2014) for precise definition.

Crossrefs

Programs

  • Maple
    b:= proc(x, y) option remember; `if`([x, y]=[0$2], 1,
          `if`(x>0, add(b(x-1, y+j), j=-1..1), 0)+
          `if`(y>0, b(x, y-1), 0)+`if`(y<0, b(x, y+1), 0))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 21 2021
  • Mathematica
    b[x_, y_] := b[x, y] = If[{x, y} == {0, 0}, 1,
         If[x > 0, Sum[b[x - 1, y + j], {j, -1, 1}], 0] +
         If[y > 0, b[x, y - 1], 0] + If[y < 0, b[x, y + 1], 0]];
    a[n_] := b[n, 1];
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, May 02 2022, after Alois P. Heinz *)

Formula

See Dziemianczuk (2014) Equation (33a) with m=1.
From Vaclav Kotesovec, Jul 15 2022: (Start)
Recurrence: (n+1)*(4*n - 3)*a(n) = 6*(4*n^2 - n - 1)*a(n-1) + 3*(n-1)*(4*n + 1)*a(n-2).
a(n) ~ (3 + 2*sqrt(3))^(n+1) / sqrt(6*Pi*n). (End)

Extensions

More terms from Lars Blomberg, Aug 01 2015

A102051 Matrix inverse of triangle A101275 (number of Schröder paths).

Original entry on oeis.org

1, -1, 1, 3, -4, 1, -9, 15, -7, 1, 31, -58, 36, -10, 1, -113, 229, -170, 66, -13, 1, 431, -924, 775, -372, 105, -16, 1, -1697, 3795, -3481, 1939, -691, 153, -19, 1, 6847, -15822, 15542, -9674, 4072, -1154, 210, -22, 1, -28161, 66801, -69276, 47012, -22446, 7606, -1788, 276, -25, 1
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2004

Keywords

Comments

Row sums are {1,0,0,0...}. Absolute row sums form A006139. Column 0 forms signed A052709. Column 1 forms A102052. Column 2 forms A102053.

Examples

			Rows begin:
[1],
[ -1,1],
[3,-4,1],
[ -9,15,-7,1],
[31,-58,36,-10,1],
[ -113,229,-170,66,-13,1],
[431,-924,775,-372,105,-16,1],
[ -1697,3795,-3481,1939,-691,153,-19,1],
[6847,-15822,15542,-9674,4072,-1154,210,-22,1],...
Matrix inverse equals triangle A101275:
[1],
[1,1],
[1,4,1],
[1,13,7,1],
[1,44,34,10,1],...
		

Crossrefs

Programs

  • Maxima
    T(n,m):=(-1)^(n-m)*(2*m+1)*(sum((binomial(k,n-k)*binomial(2*k,k-m))/(m+k+1),k,0,n)); /* Vladimir Kruchinin, Apr 18 2015 */
  • PARI
    {T(n,k)=polcoeff(polcoeff(2/(2*y+(1-y)*(1+sqrt(1+4*x-4*x^2+x*O(x^n)))),n)+y*O(y^k),k)}
    

Formula

G.f.: 2/(1+y+(1-y)*sqrt(1+4*x-4*x^2)).
T(n,m) = (-1)^(n-m)*(2*m+1)*Sum_{k=0..n} C(k,n-k)*C(2*k,k-m)/(m+k+1). - Vladimir Kruchinin, Apr 18 2015

A110135 Square array of expansions of 1/sqrt(1-4x-4*k*x^2), read by antidiagonals.

Original entry on oeis.org

1, 2, 1, 6, 2, 1, 20, 8, 2, 1, 70, 32, 10, 2, 1, 252, 136, 44, 12, 2, 1, 924, 592, 214, 56, 14, 2, 1, 3432, 2624, 1052, 304, 68, 16, 2, 1, 12870, 11776, 5284, 1632, 406, 80, 18, 2, 1, 48620, 53344, 26840, 9024, 2332, 520, 92, 20, 2, 1, 184756, 243392, 137638, 50304
Offset: 0

Views

Author

Paul Barry, Jul 13 2005

Keywords

Comments

Column k has g.f. 1/sqrt(1-4x-4*k*x^2) and e.g.f. exp(2x)BesselI(0,2*sqrt(k)x). Columns include A000984, A006139, A084609, A098453. Row sums of triangle are A110136. Diagonal sums of triangle are A110137.

Examples

			As a square array, rows start
    1,   1,    1,    1,    1, ...
    2,   2,    2,    2,    2, ...
    6,   8,   10,   12,   14,   16, ...
   20,  32,   44,   56,   68,   80, ...
   70, 136,  214,  304,  406,  520, ...
  252, 592, 1052, 1632, 2332, 3152, ...
As a number triangle, rows start
    1;
    2,   1;
    6,   2,   1;
   20,   8,   2,   1;
   70,  30,  10,   2,   1;
  252, 136,  44,  12,   2,   1;
		

Formula

Square array T(n, k) = Sum_{j=0..floor(n/2)} C(n, j)*C(2(n-j), n)*k^j.
Number triangle T1(n, k) = Sum_{j=0..floor((n-k)/2)} C(n-k, j)*C(2(n-k-j), n-k)*k^j;

A110446 Triangle of Delannoy paths counted by number of diagonal steps not preceded by an east step.

Original entry on oeis.org

1, 2, 1, 8, 4, 1, 32, 24, 6, 1, 136, 128, 48, 8, 1, 592, 680, 320, 80, 10, 1, 2624, 3552, 2040, 640, 120, 12, 1, 11776, 18368, 12432, 4760, 1120, 168, 14, 1, 53344, 94208, 73472, 33152, 9520, 1792, 224, 16, 1, 243392, 480096, 423936, 220416, 74592, 17136
Offset: 0

Views

Author

David Callan, Jul 20 2005

Keywords

Comments

T(n,k) = number of Delannoy paths (A001850) of steps east(E), north(N) and diagonal (D) (i.e., northeast) from (0,0) to (n,n) containing k Ds not preceded by an E.

Examples

			Table begins
\ k...0....1....2....3....4....
n\
0 |...1
1 |...2....1
2 |...8....4....1
3 |..32...24....6....1
4 |.136..128...48....8....1
5 |.592..680..320...80...10....1
The paths ENDD, NDDE, DEND, DNDE, DDEN, DDNE each have 2 Ds not preceded by an E,
and so T(3,2)=6.
		

Crossrefs

Column k=0 is A006139.

Programs

  • Mathematica
    T[n_, k_] := SeriesCoefficient[(1-z(4 + 2*t) - z^2 (4 - 4*t - t^2))^(-1/2), {z, 0, n}, {t, 0, k}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 08 2016 *)

Formula

G.f. G(z, t)=Sum_{n>=k>=0}T(n, k)*z^n*t^k is given by G(z, t)= (1 - z(4 + 2*t) - z^2(4 - 4*t - t^2))^(-1/2)

A260772 Certain directed lattice paths.

Original entry on oeis.org

1, 3, 10, 41, 190, 946, 4940, 26693, 147990, 837102, 4811860, 28027210, 165057100, 981177060, 5879570200, 35478788269, 215398416870, 1314794380374, 8064119033220, 49673222082782, 307163049317540, 1906066361809148, 11865666767361960, 74081851132379426
Offset: 0

Views

Author

N. J. A. Sloane, Jul 30 2015

Keywords

Comments

See Dziemianczuk (2014) for precise definition.

Crossrefs

Programs

  • Maple
    # A260772 satisfies a 4th-order recurrence that can be reduced
    # to a 2nd-order recurrence given in this program t:
    t := proc(n) options remember;
    if n <= 1 then
        [-1/2, 0, 1, 4][2*n+2]
      else
        (16*(n-2)*(2*n-3)*(5*n-2)*t(n-2) + (440*n^3-1056*n^2+724*n-144)*t(n-1))
           /( n*(2*n+1)*(5*n-7) )
      fi
    end:
    A260772 := proc(n)
    t(n/2) + ( (2-2*n)*t((n-1)/2)+(n+2)*t((n+1)/2) ) / (1+5*n)
    end:
    seq(A260772(i),i=0..100);
    # Mark van Hoeij, Jul 14 2022
  • Maxima
    a(n):=if n=0 then 1 else sum((-1)^j*binomial(n,j)*binomial(3*n-4*j,n-4*j+1),j,0,(n+1)/4)/n; /* Vladimir Kruchinin, Apr 04 2019 */
    
  • PARI
    a(n) = if (n==0, 1, sum(j=0, (n+1)/4, (-1)^j*binomial(n,j)*binomial(3*n-4*j, n-4*j+1))/n); \\ Michel Marcus, Apr 05 2019

Formula

G.f.: P1(x) = (2*(1-x)/3)/x - ((2*sqrt(1-5*x-2*x^2)/3)/x)*sin((Pi/6 + arccos(((20*x^3-6*x^2+15*x-2)/2)/(1-5*x-2*x^2)^(3/2))/3)). - See Dziemianczuk (2014), Proposition 11.
a(n) = (1/n)*Sum_{j=0..(n+1)/4} (-1)^j*C(n,j)*C(3*n-4*j,n-4*j+1), a(0)=1. - Vladimir Kruchinin, Apr 04 2019
n*(n+1)*(25*n^2-70*n+21)*a(n) - 30*(7*n-15)*n*a(n-1) + (-1100*n^4+5280*n^3-6424*n^2-1188*n+3816)*a(n-2) + 120*(n+2)*(n-3)*a(n-3) - 16*(n-3)*(n-4)*(25*n^2-20*n-24)*a(n-4) = 0. - Mark van Hoeij, Jul 14 2022
a(n) ~ 2^(n - 1/2) * phi^((10*n - 1)/4) / (sqrt(Pi) * 5^(1/4) * sqrt(phi^(3/2) - 2) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Jul 15 2022

Extensions

More terms from Lars Blomberg, Aug 01 2015

A387401 a(n) = Sum_{k=0..n} (1-i)^k * (1+i)^(n-k) * binomial(n+1,k) * binomial(n+1,n-k), where i is the imaginary unit.

Original entry on oeis.org

1, 4, 18, 80, 360, 1632, 7448, 34176, 157536, 728960, 3384128, 15754752, 73525504, 343870464, 1611288960, 7562801152, 35550504448, 167339022336, 788643765248, 3720901222400, 17573439614976, 83074892775424, 393056192851968, 1861155016212480, 8819174122700800, 41818448615636992
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[2^(n-k) * Binomial(n+1,n-2*k) * Binomial(2*k+1,k): k in [0..Floor (n/2)]]: n in [0..35]]; // Vincenzo Librandi, Sep 04 2025
  • Mathematica
    Table[Sum[2^(n-k)*Binomial[n+1,n-2*k]*Binomial[2*k+1,k],{k,0,Floor[n/2]}],{n,0,30}] (* Vincenzo Librandi, Sep 04 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, 2^(n-k)*binomial(n+1, n-2*k)*binomial(2*k+1, k));
    

Formula

n*(n+2)*a(n) = (n+1) * (2*(2*n+1)*a(n-1) + 4*n*a(n-2)) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 2^(n-k) * binomial(n+1,n-2*k) * binomial(2*k+1,k).
a(n) = [x^n] (1+2*x+2*x^2)^(n+1).
E.g.f.: exp(2*x) * BesselI(1, 2*sqrt(2)*x) / sqrt(2), with offset 1.
a(n) = (n+1) * A071356(n).

A387402 a(n) = Sum_{k=0..n} (1-i)^k * (1+i)^(n-k) * binomial(n+2,k) * binomial(n+2,n-k), where i is the imaginary unit.

Original entry on oeis.org

1, 6, 32, 160, 780, 3752, 17920, 85248, 404640, 1918400, 9090048, 43064320, 204032192, 966887040, 4583424000, 21735350272, 103114538496, 489392157696, 2323701678080, 11037970513920, 52454251902976, 249373626208256, 1186024281341952, 5642924625100800, 26858183388774400, 127880625111662592
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[2^(n-k) * Binomial(n+2,n-2*k) * Binomial(2*k+2,k): k in [0..Floor (n/2)]]: n in [0..35]]; // Vincenzo Librandi, Sep 04 2025
  • Mathematica
    Table[Sum[2^(n-k)*Binomial[n+2,n-2*k]*Binomial[2*k+2,k],{k,0,Floor[n/2]}],{n,0,30}] (* Vincenzo Librandi, Sep 04 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, 2^(n-k)*binomial(n+2, n-2*k)*binomial(2*k+2, k));
    

Formula

n*(n+4)*a(n) = (n+2) * (2*(2*n+3)*a(n-1) + 4*(n+1)*a(n-2)) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 2^(n-k) * binomial(n+2,n-2*k) * binomial(2*k+2,k).
a(n) = [x^n] (1+2*x+2*x^2)^(n+2).
E.g.f.: exp(2*x) * BesselI(2, 2*sqrt(2)*x) / 2, with offset 2.

A387403 a(n) = Sum_{k=0..n} (1-i)^k * (1+i)^(n-k) * binomial(n+3,k) * binomial(n+3,n-k), where i is the imaginary unit.

Original entry on oeis.org

1, 8, 50, 280, 1484, 7616, 38304, 190080, 934560, 4564736, 22189024, 107476096, 519180480, 2502850560, 12046666752, 57912029184, 278136798720, 1334832967680, 6402435630080, 30695114813440, 147110418036736, 704860523102208, 3376580007936000, 16172904859238400
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[2^(n-k) * Binomial(n+3,n-2*k) * Binomial(2*k+3,k): k in [0..Floor (n/2)]]: n in [0..35]]; // Vincenzo Librandi, Sep 04 2025
  • Mathematica
    Table[Sum[2^(n-k)*Binomial[n+3,n-2*k]*Binomial[2*k+3,k],{k,0,Floor[n/2]}],{n,0,30}] (* Vincenzo Librandi, Sep 04 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, 2^(n-k)*binomial(n+3, n-2*k)*binomial(2*k+3, k));
    

Formula

n*(n+6)*a(n) = (n+3) * (2*(2*n+5)*a(n-1) + 4*(n+2)*a(n-2)) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 2^(n-k) * binomial(n+3,n-2*k) * binomial(2*k+3,k).
a(n) = [x^n] (1+2*x+2*x^2)^(n+3).
E.g.f.: exp(2*x) * BesselI(3, 2*sqrt(2)*x) / (2*sqrt(2)), with offset 3.

A387466 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 4*x - (2*k*x)^2).

Original entry on oeis.org

1, 1, 2, 1, 2, 6, 1, 2, 8, 20, 1, 2, 14, 32, 70, 1, 2, 24, 68, 136, 252, 1, 2, 38, 128, 406, 592, 924, 1, 2, 56, 212, 1096, 2332, 2624, 3432, 1, 2, 78, 320, 2566, 7632, 13964, 11776, 12870, 1, 2, 104, 452, 5320, 20092, 60864, 83848, 53344, 48620
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2025

Keywords

Examples

			Square array begins:
    1,    1,     1,     1,      1,      1,       1, ...
    2,    2,     2,     2,      2,      2,       2, ...
    6,    8,    14,    24,     38,     56,      78, ...
   20,   32,    68,   128,    212,    320,     452, ...
   70,  136,   406,  1096,   2566,   5320,   10006, ...
  252,  592,  2332,  7632,  20092,  44752,   88092, ...
  924, 2624, 13964, 60864, 210524, 607424, 1523724, ...
		

Crossrefs

Columns k=0..4 give A000984, A006139, A084770, A098455, A098456.
Main diagonal gives A387467.
Cf. A386621.

Programs

  • PARI
    a(n, k) = sum(j=0, n\2, (k^2+1)^j*2^(n-2*j)*binomial(n, 2*j)*binomial(2*j, j));

Formula

A(n,k) = Sum_{j=0..n} (1-k*i)^j * (1+k*i)^(n-j) * binomial(n,j)^2, where i is the imaginary unit.
A(n,k) = Sum_{j=0..floor(n/2)} k^(2*j) * binomial(2*(n-j),n-j) * binomial(n-j,j).
n*A(n,k) = 2*(2*n-1)*A(n-1,k) + 4*k^2*(n-1)*A(n-2,k) for n > 1.
A(n,k) = Sum_{j=0..floor(n/2)} (k^2+1)^j * 2^(n-2*j) * binomial(n,2*j) * binomial(2*j,j).
A(n,k) = [x^n] (1 + 2*x + (k^2+1)*x^2)^n.
E.g.f. of column k: exp(2*x) * BesselI(0, 2*sqrt(k^2+1)*x).
Previous Showing 31-40 of 48 results. Next