cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A027261 a(n) = Sum_{k=0..2n} (k+1) * A025177(n, k).

Original entry on oeis.org

1, 4, 18, 72, 270, 972, 3402, 11664, 39366, 131220, 433026, 1417176, 4605822, 14880348, 47829690, 153055008, 487862838, 1549681956, 4907326194, 15496819560, 48814981614, 153418513644, 481176247338, 1506290861232, 4707158941350, 14686335897012, 45753584909922
Offset: 0

Views

Author

Keywords

Crossrefs

Formula

a(n) = 2(n+1)*3^(n-1), for n>1 (conjectured). - Ralf Stephan, Feb 02 2004
From Colin Barker, Jul 28 2012: (Start)
Conjecture: a(n) = 6*a(n-1)-9*a(n-2), for n>3.
G.f.: (1-9*x^2+18*x^3)/(1-3*x)^2. (End)

Extensions

a(1) corrected and more terms from Sean A. Irvine, Oct 26 2019

A081106 6th binomial transform of (1,1,0,0,0,0,...).

Original entry on oeis.org

1, 7, 48, 324, 2160, 14256, 93312, 606528, 3919104, 25194240, 161243136, 1027924992, 6530347008, 41358864384, 261213880320, 1645647446016, 10344069660672, 64885527871488, 406239826673664, 2538998916710400, 15843353240272896, 98716277881700352, 614234617930579968
Offset: 0

Views

Author

Paul Barry, Mar 07 2003

Keywords

Comments

Main diagonal of array defined by m(1,j) = j; m(i,1) = i and m(i,j) = m(i-1,j) + 5*m(i-1,j-1). - Benoit Cloitre, Jun 13 2003

Crossrefs

Programs

  • Magma
    [(n+6)*6^(n-1): n in [0..25]]; // Vincenzo Librandi, Aug 06 2013
  • Mathematica
    CoefficientList[Series[(1 - 5 x)/(1 - 6 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
    LinearRecurrence[{12,-36},{1,7},30] (* Harvey P. Dale, Nov 07 2013 *)

Formula

a(n) = 12*a(n-1) - 36*a(n-2) with n > 1, a(0) = 1, a(1) = 7.
a(n) = (n + 6)*6^(n-1).
G.f.: (1 - 5*x)/(1 - 6*x)^2.
E.g.f.: exp(6*x)*(1 + x). - Stefano Spezia, Mar 05 2023

A081108 8th binomial transform of (1,1,0,0,0,0,...).

Original entry on oeis.org

1, 9, 80, 704, 6144, 53248, 458752, 3932160, 33554432, 285212672, 2415919104, 20401094656, 171798691840, 1443109011456, 12094627905536, 101155069755392, 844424930131968, 7036874417766400, 58546795155816448, 486388759756013568
Offset: 0

Views

Author

Paul Barry, Mar 07 2003

Keywords

Comments

Main diagonal of array defined by m(0,j) = j; m(i,0) = i and m(i,j) = m(i-1,j) + 7*m(i-1,j-1). - Benoit Cloitre, Jun 13 2003

Crossrefs

Programs

Formula

a(n) = 16*a(n-1) - 64*a(n-2), a(0) = 1, a(1) = 9.
a(n) = (n + 8)*8^(n-1).
G.f.: (1 - 7*x)/(1 - 8*x)^2.
E.g.f.: exp(8*x)*(1 + x). - Stefano Spezia, Mar 04 2023

A081279 Binomial transform of Chebyshev coefficients A001794.

Original entry on oeis.org

1, 8, 47, 238, 1101, 4788, 19899, 79866, 311769, 1189728, 4454919, 16415622, 59659173, 214229772, 761200659, 2679525522, 9353893041, 32409397944, 111534054111, 381480041502, 1297471217661, 4390248981348, 14785128121707
Offset: 0

Views

Author

Paul Barry, Mar 16 2003

Keywords

Crossrefs

Programs

  • Magma
    [(2*n^3+30*n^2 + 103*n + 81)*3^(n - 4): n in [0..25]]; // Vincenzo Librandi, Aug 07 2013
  • Mathematica
    CoefficientList[Series[(1 - 2 x) (1 - x)^2 / (1 - 3 x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 07 2013 *)
    LinearRecurrence[{12,-54,108,-81},{1,8,47,238},30] (* Harvey P. Dale, Jul 27 2015 *)

Formula

a(n) = (2*n^3 + 30*n^2 + 103*n + 81) * 3^(n-4).
a(n) = 12*a(n-1) -54*a(n-2) +108*a(n-3) +8*1a(n-4), a(0)=1, a(1)=8, a(2)=47, a(3)=238.
G.f.: (1-2*x)*(1-x)^2/(1-3*x)^4.

A103247 Triangle read by rows: T(n,k) is the coefficient of x^k (0<=k<=n) in the monic characteristic polynomial of the n X n matrix with 3's on the diagonal and 1's elsewhere (n>=1). Row 0 consists of the single term 1.

Original entry on oeis.org

1, -3, 1, 8, -6, 1, -20, 24, -9, 1, 48, -80, 48, -12, 1, -112, 240, -200, 80, -15, 1, 256, -672, 720, -400, 120, -18, 1, -576, 1792, -2352, 1680, -700, 168, -21, 1, 1280, -4608, 7168, -6272, 3360, -1120, 224, -24, 1, -2816, 11520, -20736, 21504, -14112, 6048, -1680, 288, -27, 1, 6144, -28160, 57600, -69120, 53760, -28224, 10080, -2400, 360, -30, 1
Offset: 0

Views

Author

Emeric Deutsch, Mar 19 2005

Keywords

Comments

Row sums of the unsigned triangle yield A006234. The unsigned triangle is the mirror image of A103407.

Examples

			The monic characteristic polynomial of the matrix [3 1 1 / 1 3 1 / 1 1 3] is x^3 - 9x^2 + 24x - 20; so T(3,0)=-20, T(3,1)=24, T(3,2)=-9, T(3,3)=1.
Triangle begins:
  1;
  -3,1;
  8,-6,1;
  -20,24,-9,1;
  48,-80,48,-12,1;
  ...
		

Crossrefs

Programs

  • Maple
    with(linalg): a:=proc(i,j) if i=j then 3 else 1 fi end: 1;for n from 1 to 10 do seq(coeff(expand(x*charpoly(matrix(n,n,a),x)),x^k),k=1..n+1) od; # yields the sequence in triangular form
  • Mathematica
    M[n_] := Table[If[i == j, 3, 1], {i, 1, n}, {j, 1, n}];
    P[n_] := P[n] = CharacteristicPolynomial[M[n], x];
    row[n_] := row[n] = If[n == 0, {1}, CoefficientList[P[n]/Coefficient[P[n], x, n], x]];
    T[n_, k_] := row[n][[k]];
    Table[T[n, k], {n, 0, 10}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Aug 06 2024 *)

Formula

Appears to be the matrix product (I-S)*P^(-2), where I is the identity, P is Pascal's triangle A007318 and S is A132440, the infinitesimal generator of P. Cf. A055137 (= (I-S)*P) and A103283 (= (I-S)*P^(-1)). - Peter Bala, Nov 28 2011

A081105 5th binomial transform of (1,1,0,0,0,0,.....).

Original entry on oeis.org

1, 6, 35, 200, 1125, 6250, 34375, 187500, 1015625, 5468750, 29296875, 156250000, 830078125, 4394531250, 23193359375, 122070312500, 640869140625, 3356933593750, 17547607421875, 91552734375000, 476837158203125
Offset: 0

Views

Author

Paul Barry, Mar 07 2003

Keywords

Comments

Main diagonal of array defined by m(1,j)=j; m(i,1)=i and m(i,j)=m(i-1,j)+4*m(i-1,j-1) - Benoit Cloitre, Jun 13 2003

Crossrefs

Programs

Formula

a(n) = 10*a(n-1)-25*a(n-2), a(0)=1, a(1)=6.
a(n) = (n+5)*5^(n-1).
G.f.: (1-4x)/(1-5x)^2.
a(n) = A079027(n), n>0. - R. J. Mathar, Sep 18 2008
From Amiram Eldar, Jan 19 2021: (Start)
Sum_{n>=0} 1/a(n) = 15625*log(5/4) - 41825/12.
Sum_{n>=0} (-1)^n/a(n) = 15625*log(6/5) - 34175/12. (End)

A081109 9th binomial transform of (1,1,0,0,0,0,0,...).

Original entry on oeis.org

1, 10, 99, 972, 9477, 91854, 885735, 8503056, 81310473, 774840978, 7360989291, 69735688020, 659002251789, 6213449802582, 58462914051567, 549043018919064, 5147278302366225, 48178524910147866, 450283905890997363
Offset: 0

Views

Author

Paul Barry, Mar 07 2003

Keywords

Comments

Main diagonal of array defined by m(0,j) = j; m(i,0) = i and m(i,j) = m(i-1,j) + 8*m(i-1,j-1). - Benoit Cloitre, Jun 13 2003

Crossrefs

Programs

  • Magma
    [(n+9)*9^(n-1): n in [0..25]]; // Vincenzo Librandi, Aug 06 2013
  • Mathematica
    CoefficientList[Series[(1 - 8 x) / (1 - 9 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)

Formula

a(n) = 18*a(n-1) - 81*a(n-2), a(0) = 1, a(1) = 10.
a(n) = (n + 9)*9^(n-1).
G.f.: (1 - 8*x)/(1 - 9*x)^2.
E.g.f.: exp(9*x)*(1 + x). - Stefano Spezia, Mar 04 2023

A081909 a(n) = 3^n(n^2 - n + 18)/18.

Original entry on oeis.org

1, 3, 10, 36, 135, 513, 1944, 7290, 26973, 98415, 354294, 1259712, 4428675, 15411789, 53144100, 181752822, 617003001, 2080591515, 6973568802, 23245229340, 77096677311, 254535261273, 836828256240, 2740612539186
Offset: 0

Views

Author

Paul Barry, Mar 31 2003

Keywords

Comments

Binomial transform of A081908. 3rd binomial transform of (1,0,1,0,0,0,...). Case k=3 where a(n,k) = k^n*(n^2 - n + 2k^2)/(2k^2) with g.f. (1 - 2kx + (k^2+1)x^2)/(1-kx)^3.
a(n) is the number of words of length n defined on 4 letters where one of the letters is not used or is used exactly twice. - Enrique Navarrete, Mar 29 2024

Examples

			a(2)=10 since the number of words of length 2 defined on {0,1,2,3} that don't use 0 or use it twice are 12, 21, 13, 31, 23, 32, 11, 22, 33, 00. - _Enrique Navarrete_, Mar 29 2024
		

Crossrefs

Programs

  • Magma
    [3^n*(n^2-n+18)/18: n in [0..40]]; // Vincenzo Librandi, Apr 27 2011
  • Mathematica
    Table[3^n(n^2-n+18)/18,{n,0,30}] (* or *) CoefficientList[Series[ (1-6x+10x^2)/(1-3x)^3,{x,0,30}],x]  (* Harvey P. Dale, Apr 26 2011 *)

Formula

a(n) = 3^n*(n^2 - n + 18)/18.
G.f.: (1 - 6x + 10x^2)/(1-3x)^3.
E.g.f.: exp(3*x)*(1+x^2/2). - Enrique Navarrete, Mar 29 2024

A081107 7th binomial transform of (1,1,0,0,0,0,...).

Original entry on oeis.org

1, 8, 63, 490, 3773, 28812, 218491, 1647086, 12353145, 92236816, 686011319, 5084554482, 37569208117, 276825744020, 2034669218547, 14920907602678, 109193914728689, 797590333670424, 5815762849680175, 42338753545671674, 307770170005074861, 2234183456333136028
Offset: 0

Views

Author

Paul Barry, Mar 07 2003

Keywords

Comments

Main diagonal of array defined by m(0,j) = j; m(i,0) = i and m(i,j) = m(i-1,j) + 6*m(i-1,j-1). - Benoit Cloitre, Jun 13 2003

Crossrefs

Programs

  • Magma
    [(n+7)*7^(n-1): n in [0..25]]; // Vincenzo Librandi, Aug 06 2013
  • Mathematica
    CoefficientList[Series[(1 - 6 x)/(1 - 7 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)

Formula

a(n) = 14*a(n-1) - 49*a(n-2) with n > 1, a(0) = 1, a(1) = 8.
a(n) = (n + 7)*7^(n-1).
G.f.: (1 - 6*x)/(1 - 7*x)^2.
E.g.f.: exp(7*x)*(1 + x). - Stefano Spezia, Mar 05 2023

A081278 Binomial transform of Chebyshev polynomial coefficients A001793.

Original entry on oeis.org

1, 6, 29, 126, 513, 1998, 7533, 27702, 99873, 354294, 1240029, 4290894, 14703201, 49955454, 168466797, 564390342, 1879706817, 6227425638, 20533285917, 67411165086, 220442258241, 718277586606, 2332658764269, 7552375012566
Offset: 0

Views

Author

Paul Barry, Mar 16 2003

Keywords

Crossrefs

Programs

  • Magma
    [(n^2+8*n+9)*3^(n-2): n in [0..25]]; // Vincenzo Librandi, Aug 07 2013
  • Mathematica
    CoefficientList[Series[(1 - 2 x) (1 - x) / (1 - 3 x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 07 2013 *)

Formula

a(n) = (n^2+8*n+9)3^(n-2).
G.f.: (1-2*x)*(1-x)/(1-3x)^3.
Previous Showing 11-20 of 34 results. Next