cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 106 results. Next

A120666 Triangle read by rows: T(n, k) = (n*k)!/(n!)^k.

Original entry on oeis.org

1, 1, 6, 1, 20, 1680, 1, 70, 34650, 63063000, 1, 252, 756756, 11732745024, 623360743125120, 1, 924, 17153136, 2308743493056, 1370874167589326400, 2670177736637149247308800, 1, 3432, 399072960, 472518347558400, 3177459078523411968000, 85722533226982363751829504000, 7363615666157189603982585462030336000
Offset: 1

Views

Author

Roger L. Bagula, Aug 11 2006

Keywords

Comments

T(m,n) is the number of ways to distribute n*m different toys among m different kids so that each kid gets exactly n toys. For example, with n=3 and m=2, the 6 different toys, t1, t2, t3, t4, t5 and t6, can be distributed in exactly 20 ways among the 2 kids, k1 and k2, since there are C(6,3)=20 ways to choose the three toys for k1, with the other three toys going to k2. The proof for the general case is based on the identity C(n*m,n)*C(n*m-n,n)*...*C(n*m-n*(m-1),n) = (n*m)!/(n!)^m. - Dennis P. Walsh, Apr 12 2018

Examples

			Triangle begins:
  1;
  1,   6;
  1,  20,   1680;
  1,  70,  34650,    63063000;
  1, 252, 756756, 11732745024, 623360743125120;
		

Crossrefs

Programs

  • Magma
    [Factorial(n*k)/(Factorial(n))^k: k in [1..n], n in [1..10]]; // G. C. Greubel, Dec 26 2022
    
  • Maple
    T:= (m, n)-> (n*m)!/(m!)^n:
    seq(seq(T(m, n), n=1..m), m=1..7);  # Alois P. Heinz, Apr 12 2018
  • Mathematica
    Table[(n*k)!/(n!)^k, {n,10}, {k,n}]//Flatten
  • SageMath
    def A120666(n,k): return gamma(n*k+1)/(factorial(n))^k
    flatten([[A120666(n,k) for k in range(1,n+1)] for n in range(1,11)]) # G. C. Greubel, Dec 26 2022

Formula

T(n, k) = (k*n)!/(n!)^k.

Extensions

Edited by N. J. A. Sloane, Jun 17 2007
Offset corrected by Alois P. Heinz, Apr 12 2018
New name using formula by Joerg Arndt, Apr 15 2018

A161581 a(n) = (3n)!/(n!(n+1)!(n+2)!).

Original entry on oeis.org

21, 231, 3003, 43758, 692835, 11685817, 207157665, 3823000545, 72931087320, 1430571328200, 28734046963560, 589047962752980, 12292044987448215, 260543149635912165, 5599392250947235125, 121830987186399315825
Offset: 3

Views

Author

Alexander Adamchuk, Jun 14 2009

Keywords

Comments

3-d analog of the Catalan numbers A000108.

Crossrefs

Programs

  • Maple
    A161581 := proc(n) (3*n)!/n!/(n+1)!/(n+2)! ; end: seq(A161581(n),n=3..40) ; # R. J. Mathar, Jun 16 2009
    a := proc (n) options operator, arrow: factorial(3*n)/(factorial(n)*factorial(n+1)*factorial(n+2)) end proc: seq(a(n), n = 3 .. 20); # Emeric Deutsch, Jun 14 2009

Formula

a(n) = A006480(n)/((n+1)^2*(n+2)).
a(n) ~ 3^(3*n + 1/2) / (2*Pi*n^4). - Vaclav Kotesovec, Feb 21 2023
a(n) = (1/2)*A005789(n) for n >= 3. - Peter Bala, Mar 01 2023
D-finite with recurrence (n+2)*(n+1)*a(n) -3*(3*n-1)*(3*n-2)*a(n-1)=0. - R. J. Mathar, Nov 22 2024

Extensions

Repetitions of information contained in other sequences removed by R. J. Mathar, Jun 16 2009
More terms from Emeric Deutsch, Jun 14 2009

A178819 Pascal's prism (3-dimensional array) read by folded antidiagonal cross-sections: (h+i; h, i-j, j), h >= 0, i >= 0, 0 <= j <= i.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 3, 3, 1, 3, 6, 3, 3, 3, 1, 1, 4, 4, 6, 12, 6, 4, 12, 12, 4, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 5, 20, 30, 20, 5, 10, 30, 30, 10, 10, 20, 10, 5, 5, 1, 1, 6, 6, 15, 30, 15, 20, 60, 60, 20, 15, 60, 90, 60, 15, 6, 30, 60, 60, 30, 6, 1, 6, 15, 20, 15, 6, 1
Offset: 0

Views

Author

Harlan J. Brothers, Jun 16 2010

Keywords

Comments

P_h = level h of Pascal's prism where P_1 = Pascal's triangle (A007318) and P_2 = denominators of Leibniz harmonic triangle (A003506). A sequence of length k through P is defined by P for n = {1, 2, 3, ..., k}.

Examples

			Prism begins (levels 1-4):
1
1 1
1 2 1
1 3 3 1
1
2 2
3 6 3
4 12 12 4
1
3 3
6 12 6
10 30 30 10
1
4 4
10 20 10
20 60 60 20
		

Crossrefs

Level 1 = A007318.
Level 2 = A003506.
Level 3 = A094305.
Level 4 = A178820.
Level 5 = A178821.
Level 6 = A178822.
Sums of shallow diagonals for each level correspond to rows of square A037027.
Contains A109649 and A046816.
P = A000984.
P = A006480.
P = A000897.
P<3n-2, 3n-2, n> = A113424.

Programs

  • Mathematica
    end = 5; Column/@Table[Multinomial[h, i-j, j], {h, 0, end}, {i, 0, end}, {j, 0, i}]

Formula

a_(h, i, j) = (h+i-2; h-1, i-j, j-1), h >= 1, i >= 1, 1 <= j <= i.
Recurrence:
For P_h, element a is given by: a_(1, 1) = 1; a_(i, j) = ((i+h-2)/(i-1)) (a_(i-1, j) + a_(i-1, j-1)).

Extensions

Keyword tabf by Michel Marcus, Oct 22 2017

A273630 a(n) = Sum_{k = 0..n} (-1)^k*k^3*binomial(n,k)^3.

Original entry on oeis.org

0, -1, 0, 162, 0, -11250, 0, 576240, 0, -25259850, 0, 1007242236, 0, -37685439792, 0, 1346871240000, 0, -46504059326010, 0, 1562983866658500, 0, -51407781284599740, 0, 1661123953798807680, 0, -52886433789393750000, 0, 1662782404368229351200
Offset: 0

Views

Author

Peter Bala, Jul 17 2016

Keywords

Comments

Let d(n) = Sum_{k = 0..n} (-1)^k*binomial(n,k)^3. Clearly, by symmetry of the binomial coefficients we have d(2*n + 1) = 0. Dixon's identity is the result d(2*n) = (-1)^n*(3*n)!/n!^3. A generalization is: for r a nonnegative integer there holds Sum_{k = 0..n} (-1)^k*binomial(k,r)^3*binomial(n,k)^3 = (-1)^r*binomial(n,r)^3*d(n - r). This is the case r = 1. See A273631 (case r = 2) and A245086 (case r = 0).

Crossrefs

Programs

  • Magma
    [&+[(-1)^k*k^3 *Binomial(n, k)^3: k in [0..n]]: n in [0..70]]; // Vincenzo Librandi, Jul 23 2016
    
  • Maple
    seq(add((-1)^k*k^3*binomial(n,k)^3, k = 0..n), n = 0..30);
  • Mathematica
    Table[Sum[(-1)^k*k^3 Binomial[n, k]^3, {k, 0, n}], {n, 0, 27}] (* Michael De Vlieger, Jul 22 2016 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^k*k^3*binomial(n, k)^3) \\ Felix Fröhlich, Jul 22 2016
    
  • Python
    from math import factorial
    def A273630(n): return (1 if (m:=n>>1)&1 else -1)*n**3*factorial(3*m)//factorial(m)**3 if n&1 else 0 # Chai Wah Wu, Oct 04 2022

Formula

a(2*n) = 0; a(2*n + 1) = (-1)^(n+1)*(2*n + 1)^3*(3*n)!/n!^3.
a(2*n + 1) = -(2*n + 1)^3*A245086(2*n) = (-1)^(n+1)* (2*n + 1)^3*A006480(n).
a(n) = Sum_{k = 1..n} (-1)^k*multinomial(n, 1, k - 1, n - k)^3.
Recurrence: a(n) = -3*n^3*(3*n - 5)*(3*n - 7)/((n - 1)^2*(n - 2)^3) * a(n-2).

A295870 a(n) = binomial(3n,n)*CQC(n), where CQC(n) = A005721(n) = A005190(2n) is a central quadrinomial coefficient.

Original entry on oeis.org

1, 12, 660, 48720, 4005540, 349260912, 31626298704, 2940502593600, 278788387440420, 26831860080682800, 2613367831568654160, 257012469788428710720, 25479526081439438845200, 2543092744417831625342400, 255292245777771431285140800, 25755871314484468746363582720
Offset: 0

Views

Author

Bradley Klee, Feb 23 2018

Keywords

Comments

Compare with EllipticK A002894 and the Ramanujan period-energy functions A113424, A006480, A000897. The series expansion "T(x) = 2*Pi*Sum_{n>=0} a_n*x^n" determines the real period T of elliptic curves in the family "x=p^2+q^2-4*(q^2-p^2)*q, 0 < x < 1/108". This sequence serves as a counterexample to the naive idea that elliptic integrals will always evaluate to a hypergeometric function such as 2F1(a,b;c;x).
A300058 is the complex period-energy function, after scaling energy and time dimensions such that all a(n) are integers and a(0)=1. The Picard-Fuchs equation is "(12-288*x+9216*x^2)*T(x) + (-1+232*x-8160*x^2+82944*x^3)*T'(x) + (-x+164*x^2-6432*x^3+41472*x^4)*T''(x)".
Although the sequence is not generated by a hypergeometric function, it can be formulated in terms of Hypergeometric numbers, specifically the binomial coefficients. Then Zeilberger's algorithm outputs a second order recurrence with polynomial coefficients.
The contour plot is nice to look at, with reflection symmetry, three critical points, and two separatrices dividing the phase plane into eight distinct regions.
Hyperbolic Critical points are located at (q,p) locations (1/6,0) and (-1/4,sqrt(5)/4) and (-1/4,-sqrt(5)/4). Is it possible to use chord-and-tangent addition rules to produce an exponentially-convergent Diophantine approximation to sqrt(5) that moves along the upper separatrix x=1/8?
Does there exist a period-preserving transformation that takes any one of the curves with 0 < x < 1/108 into a particular Weierstrass curve from the L-function and Modular Forms Database?

References

  • D. Husemöller, Elliptic Curves, 2nd ed., New York: Springer, 2004.
  • J. H. Silverman, The Arithmetic of Elliptic Curves, 2nd ed., New York: Springer, 2009.

Crossrefs

Factors: A005190, A005809, A005721.
Complex Period: A300058.

Programs

  • Mathematica
    b[NN_]:=Total/@Table[((-1)^k)*Binomial[3*n,n]*Binomial[2*n,k]*Binomial[5*n-4*k-1,3*n-4*k],{n,0,NN},{k,0,Floor[3*n/4]}];
    c1=8*(-30+201*n-319*n^2+145*n^3);c2=-8640*(n-5/3)*(n-4/3)*(n-1/5);c3=10*(n-6/5)*n^2;a[0]=1;a[1]=12;a[n0_]:=ReplaceAll[(c1/c3)*a[n0-1]+(c2/c3)*a[n0-2],{n->n0}];
    ({#,SameQ[a/@Range[0, 15],#]}&@b[15])[[1]]

Formula

a(n) = A005809(n)*A005721(n).
a(n) = Sum_{k=0..floor(3n/4)} ((-1)^k)*binomial(3*n,n)*binomial(2 *n, k)*binomial(5*n - 4*k - 1, 3*n - 4*k).
c1 = 8 *(-30 + 201*n - 319*n^2 + 145*n^3); c2 = -8640*(n - 5/3)*(n - 4/3)*(n - 1/5); c3 = 10*(n - 6/5)*n^2; a(0)=1; a(1)=12; a(n) = (c1/c3)*a(n-1) + (c2/c3)*a(n-2).

A300058 a(n) = binomial(3*n,n)/(2*Pi)*Integral_{x=0..2*Pi} (12*cos^2(x)*sin(x) + 20*sin^3(x))^(2*n) dx.

Original entry on oeis.org

1, 492, 707220, 1298204880, 2654173160100, 5765723073622512, 13021894087331233104, 30217387890886676251200, 71532102917478013611243300, 171944976047709681477985038000, 418347201888204996027087975427920
Offset: 0

Views

Author

Bradley Klee, Feb 23 2018

Keywords

Comments

Compare with A295870. The series expansion "T(x)=2*Pi*sqrt(3/5)*Sum_{n>=0} a_n*(x/25)^n" determines the period T of anharmonic oscillation along a contour of the Hamiltonian energy surface "x=2H=(5/3)*p^2+q^2+4*(p^2+q^2)*q,0
The period-energy function T(x) satisfies the Picard-Fuchs equation "(2460+28512*x+2239488*x^2)*T(x)-(125-24840*x-1423008*x^2-20155392*x^3)*T'(x)+(-125*x+1620*x^2+1189728*x^3+10077696 x^4)*T''(x)", also the P.F.Eq. of A295870 under transformation x->x'=1/108-x.
A300057 has a similar definition to A005721, with a couple of extra integers appearing in the integrand. This makes a nice analogy between real and complex periods A295870, A300058. Second-order recurrences with polynomial coefficients define both sequences.

Crossrefs

Cf. A002894, A113424, A006480, A000897. Factors: A005809, A300057. Real Period: A295870.

Programs

  • Maple
    a := n -> 36^n*(3*n)!/n!^3*hypergeom([-2*n, n+1/2], [n+1], -2/3):
    seq(simplify(a(n)), n=0..10); # Peter Luschny, Apr 19 2018
  • Mathematica
    c1=12*(-230+2259*n-3933*n^2+1863*n^3);c2=5248800*(n-5/3)*(n-4/3)*(n-1/9);c3=9*n^2*(n-10/9);a[0]=1;a[1]=492;a[n0_]:=ReplaceAll[(c1/c3)*a[n0-1]+(c2/c3)*a[n0-2],n->n0];
    b[NN_]:=Expand[Total[Flatten[#]]&/@Table[Binomial[3*n,n]*Binomial[2*n,k2]*Binomial[2*n,k1]*Binomial[2*n,3*n-k1-k2]*((4+Sqrt[15])^(2*n-k1))*((4-Sqrt[15])^(2*n-k2)),{n,0,NN},{k1,0,2*n},{k2,0,2*n}]]; ({#,SameQ[#,a/@Range[0,10]]}&@b[10])[[1]]
    Table[Binomial[3*n, n] * SeriesCoefficient[(1 + 9*z + 9*z^2 + z^3)^(2*n), {z, 0, 3*n}], {n, 0, 15}] (* Vaclav Kotesovec, Apr 18 2018 *)

Formula

a(n) = A005809(n)*A300057(n).
a(n) = Sum_{k1=0..2n} Sum_{k2=0..2n} binomial(3*n,n)*binomial(2*n,k2)*binomial(2*n,k1)*binomial(2*n,3*n-k1-k2)*((4+sqrt(15))^(2*n-k1))*((4-sqrt(15))^(2*n-k2))
a(0) = 1; a(1) = 492; a(n):=(c1/c3)*a(n-1)+(c2/c3)*a(n-2); with
c1 = 12*(-230+2259*n-3933*n^2+1863*n^3);
c2 = 5248800*(n-5/3)*(n-4/3)*(n-1/9);
c3 = 9*n^2*(n-10/9);
a(n) ~ 2^(2*n - 1) * 3^(3*n - 1/2) * 5^(2*n + 1/2) / (Pi*n). - Vaclav Kotesovec, Apr 18 2018

A308835 The nome q=exp(T_C/T_R)=Sum_{n>=0} a(n)*(x/27)^n follows from the series solutions of 2*T-d/dx(9*(1-x)*x*dT/dx)=0.

Original entry on oeis.org

0, 1, 15, 279, 5729, 124554, 2810718, 65114402, 1538182398, 36887880105, 895303119303, 21943398532563, 542209373589501, 13489931811324550, 337599511395854298, 8491805574767197650, 214548940430198454054, 5441921826542937659088, 138512110164878076019560
Offset: 0

Author

Bradley Klee, Jun 27 2019

Keywords

Comments

Also appears in Ramanujan's theory of elliptic functions, signature 3 (cf. A006480). Almkvist et al. give a real and complex Ansatz for the second-order, ordinary differential equation: T_R = 1 + x*{Z[[x]]}, T_C = T_R*log(x) + x*{Z[[x]]}.

References

  • B. C. Berndt, "Ramanujan's Notebooks Part II", Springer, 2012, pages 80-82.

Crossrefs

Programs

  • Mathematica
    G[nMax_]:=Dot[RecurrenceTable[{Dot[{(3*n-5)^2 (3*n-4)^2 (9*n-4), -18(n - 1)(40 - 197*n + 351*n^2 - 279*n^3 + 81*n^4),81(n - 1)*n^3*(9*n - 13)}, a[n-#] & /@ Reverse[Range[0, 2]]] == 0, a[0] == 0, a[1] == 5/9}, a, {n, 0, nMax}], x^Range[0, nMax]];
    qSer[nMax_] := Expand[Times[x, Normal[Series[Exp[ Divide[G[nMax], Hypergeometric2F1[1/3, 2/3, 1, x]]], {x, 0, nMax}]]]];
    CoefficientList[(1/k)*qSer[20]/.{x->k*x},x]/.{k->27}

A364512 a(n) = (6*n)!^2/((5*n)! * (3*n)!^2 * n!).

Original entry on oeis.org

1, 120, 60984, 39673920, 28734361656, 22105177305120, 17676475936257600, 14521297485225136320, 12168600808728479801400, 10353699767677668805341120, 8916443122582617618026013984, 7754263877699070505609688536320, 6798445963232542402250454047721024
Offset: 0

Author

Peter Bala, Jul 29 2023

Keywords

Comments

Given two sequences of integers c = (c_1, c_2, ..., c_K) and d = (d_1, d_2, ..., d_L) where c_1 + ... + c_K = d_1 + ... + d_L we can define the factorial ratio sequence u_n(c, d) = (c_1*n)!*(c_2*n)!* ... *(c_K*n)!/ ( (d_1*n)!*(d_2*n)!* ... *(d_L*n)! ) and ask whether it is integral for all n >= 0. The integer L - K is called the height of the sequence.
The present sequence is an integral factorial ratio sequence of height 2.
It is the particular case a = 2, b = 3 of the 2-parameter family of factorial ratio sequences defined by u(n) = (2*n)!/n! * ((a+b+1)*n)! * (2*a*n)! * (2*b*n)! /( ((a+b)*n)! * ((a+1)*n)! * ((b+1)*n)! * (a*n)! * (b*n)! ). These sequences are shown to be integral by the identity u(n) = Sum_{i = -n..n} (-1)^i * binomial(2*n, n+i) * binomial(2*a*n, a*n+i) * binomial(2*b*n, b*n+i).
For other cases see A006480 (a = b = 1), A364507 (a = b = 2), A364508 (a = b = 3), A364510 (a = 1, b = 2) and A364511 (a = 1, b = 3).

Crossrefs

Programs

  • Maple
    seq( (6*n)!^2/((5*n)! * (3*n)!^2 * n!), n = 0..15);
  • Mathematica
    A364512[n_]:=(6n)!^2/((5n)!(3n)!^2n!);Array[A364512,15,0] (* Paolo Xausa, Oct 05 2023 *)

Formula

a(n) = Sum_{i = -n..n} (-1)^i * binomial(2*n, n+i) * binomial(4*n, 2*n+i) * binomial(6*n, 3*n+i), showing that the sequence is integral. Compare with Dixon's identity Sum_{i = -n..n} (-1)^i * binomial(2*n, n+i)^3 = (3*n)!/n!^3.
a(n) = (-1)^n * (6*n)!/((3*n)!*(2*n)!*n!) * hypergeom([-2*n, -3*n, -4*n], [n + 1, 2*n + 1], 1).
P-recursive: a(n) = (576/5)*(2*n-1)^2*(6*n-1)^2*(6*n-5)^2/((5*n-1)*(5*n-2)*(5*n-3)*(5*n-4)*n^2) * a(n-1) with a(0) = 1.
a(n) ~ c^n * 1/(sqrt(5)*Pi*n), where c = (2^12)*(3^6)/(5^5).
a(n) = [x^n] G(x)^(24*n), where the power series G(x) = 1 + 5*x + 683*x^2 + 205020*x^3 + 81906321*x^4 + 38109640996*x^5 + 19499018805299*x^6 + 10646310099966919*x^7 + 6093917580539621690*x^8 + ... appears to have integer coefficients.
exp( Sum_{n > = 1} a(n)*x^n/n ) = F(x)^24, where the power series F(x) = 1 + 5*x + 1283*x^2 + 557400*x^3 + 302894393*x^4 + 186417421346*x^5 + 124214055930695*x^6 + 87454455447781703*x^7 + 64116544959085589954*x^8 + ... appears to have integer coefficients.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3^r)) hold for all primes p >= 5 and all positive integers n and r [added Oct 11 2024: follows from Meštrović, Section 6, equation 39, since a(n) = binomial(6*n, 3*n)*binomial(6*n, n)].

A024487 a(n) = (1/(4n+2))*M(3n; n,n,n).

Original entry on oeis.org

1, 9, 120, 1925, 34398, 659736, 13302432, 278397405, 5996669250, 132166590270, 2967978162240, 67694635250424, 1564409223571600, 36561597688116000, 862822254602816640, 20535537339485077005, 492426552811873991850, 11886753074132473787250, 288645723487776840570000
Offset: 1

Keywords

Comments

Number of standard Young tableaux of shape (n,n,{1}^n). - Alois P. Heinz, Apr 05 2013

Examples

			G.f. = x + 9*x^2 + 120*x^3 + 1925*x^4 + 34398*x^5 + 659736*x^6 + ...
		

Crossrefs

Cf. A006480.

Programs

  • Maple
    with(combinat):
    a:= n-> multinomial(3*n, n$3)/(4*n+2):
    seq(a(n), n=1..30);  # Alois P. Heinz, Apr 05 2013
  • Mathematica
    a[ n_] := If[ n < 1, 0, (3 n)! / (n!^3 (4 n + 2))]; (* Michael Somos, Oct 25 2014 *)
  • PARI
    {a(n) = if( n<1, 0, (3*n)! / (n!^3 * (4*n + 2)))}; /* Michael Somos, Oct 25 2014 */

Formula

a(n) ~ 3^(3*n+1/2) / (8*Pi*n^2). - Vaclav Kotesovec, Sep 06 2014
a(n) = A006480(n) / (4*n + 2) if n>0. - Michael Somos, Oct 25 2014
D-finite with recurrence: n^2*(2*n+1)*a(n) -3*(3*n-1)*(2*n-1)*(3*n-2)*a(n-1)=0. - R. J. Mathar, Apr 27 2020

Extensions

Corrected and extended by Alois P. Heinz, Apr 05 2013

A071800 Number of lattice paths in the lattice [0..2n] X [0..2n] X [0..2n] which do not pass through the point (n,n,n). Number of paths through a lattice containing a "hole".

Original entry on oeis.org

54, 26550, 14330736, 8264889270, 4978317147804, 3090501687886704, 1961313438507566400, 1265749551338006549430, 827693426702217868006500, 547017649101008848332870300, 364691794467483796757326646400, 244920478151771001164678945670000
Offset: 1

Author

T. D. Noe, Jun 06 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Factorial[6n]/Factorial[2n]^3-(Factorial[3n]/Factorial[n]^3)^2, {n, 1, 10}]

Formula

a(n) = s(3,2n)-s(3,n)^2.
Previous Showing 71-80 of 106 results. Next