cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A116484 Expansion of (-1+3*x)/(5*x^2 + 1 - 2*x).

Original entry on oeis.org

-1, 1, 7, 9, -17, -79, -73, 249, 863, 481, -3353, -9111, -1457, 42641, 92567, -28071, -518977, -897599, 799687, 6087369, 8176303, -14084239, -69049993, -67678791, 209892383, 758178721, 466895527, -2857102551, -8048682737, -1811852719
Offset: 0

Views

Author

Creighton Dement, Feb 17 2006

Keywords

Comments

Binomial transform of signed powers of 2: (-1, 2, 4, -8, -16, 32, 64, -128, -256, 512, 1024). Inverse binomial transform of (-1, 0, 8, 32, 64, 0, -512, -2048, -4096, 0, 32768, 131072, 262144, 0, -2097152, -8388608). Compare with A116483.
Floretion Algebra Multiplication Program, FAMP Code: 2basekforseq[A*B] with A = - .5'i + .5'j - .5i' + .5j' + 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj' and B = - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki' ; 1vesforseq = A000004

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(-1+3x)/(5x^2+1-2x),{x,0,40}],x] (* or *) LinearRecurrence[{2,-5},{-1,1},40] (* Harvey P. Dale, Jun 24 2013 *)

Formula

a(n) = 3*A045873(n) - A045873(n+1). - R. J. Mathar, Apr 23 2009
E.g.f.: exp(x)*(sin(2*x) - cos(2*x)). - Arkadiusz Wesolowski, Aug 31 2012
a(0)=-1, a(1)=1, a(n) = 2*a(n-1) - 5*a(n-2). - Harvey P. Dale, Jun 24 2013
a(n) = (1/2)*((-1 - i)*(1 + 2*i)^n - (1 - i)*(1 - 2*i)^n), n >= 0, where i=sqrt(-1). - Taras Goy, Apr 20 2019

A117411 Skew triangle associated to the Euler numbers.

Original entry on oeis.org

1, 0, 1, 0, -4, 1, 0, 0, -12, 1, 0, 0, 16, -24, 1, 0, 0, 0, 80, -40, 1, 0, 0, 0, -64, 240, -60, 1, 0, 0, 0, 0, -448, 560, -84, 1, 0, 0, 0, 0, 256, -1792, 1120, -112, 1, 0, 0, 0, 0, 0, 2304, -5376, 2016, -144, 1, 0, 0, 0, 0, 0, -1024, 11520, -13440, 3360, -180, 1, 0, 0, 0, 0, 0, 0, -11264, 42240, -29568, 5280, -220, 1
Offset: 0

Views

Author

Paul Barry, Mar 13 2006

Keywords

Comments

Inverse is A117414. Row sums of the inverse are the Euler numbers A000364.
Triangle, read by rows, given by [0,-4,4,0,0,0,0,0,0,0,...] DELTA [1,0,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 01 2009

Examples

			Triangle begins
  1;
  0,  1;
  0, -4,   1;
  0,  0, -12,   1;
  0,  0,  16, -24,    1;
  0,  0,   0,  80,  -40,     1;
  0,  0,   0, -64,  240,   -60,      1;
  0,  0,   0,   0, -448,   560,    -84,      1;
  0,  0,   0,   0,  256, -1792,   1120,   -112,      1;
  0,  0,   0,   0,    0,  2304,  -5376,   2016,   -144,      1;
  0,  0,   0,   0,    0, -1024,  11520, -13440,   3360,   -180,    1;
  0,  0,   0,   0,    0,     0, -11264,  42240, -29568,   5280, -220,    1;
  0,  0,   0,   0,    0,     0,   4096, -67584, 126720, -59136, 7920, -264, 1;
		

Crossrefs

Programs

  • Magma
    A117411:= func< n,k | (-4)^(n-k)*(&+[Binomial(n,k-j)*Binomial(j,n-k): j in [0..n-k]]) >;
    [A117411(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Sep 07 2022
    
  • Mathematica
    T[n_,k_]:= T[n,k]= (-4)^(n-k)*Sum[Binomial[n, k-j]*Binomial[j, n-k], {j,0,n-k}];
    Table[T[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 07 2022 *)
  • SageMath
    def A117411(n,k): return (-4)^(n-k)*sum(binomial(n,k-j)*binomial(j,n-k) for j in (0..n-k))
    flatten([[A117411(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Sep 07 2022

Formula

Sum_{k=0..n} T(n, k) = A006495(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A117413(n).
T(n, k) = (-4)^(n-k)*Sum_{j=0..n-k} C(n,k-j)*C(j,n-k).
G.f.: (1-x*y)/(1-2x*y+x^2*y(y+4)). - Paul Barry, Mar 14 2006
T(n, k) = (-4)^(n-k)*A098158(n,k). - Philippe Deléham, Nov 01 2009
T(n, k) = 2*T(n-1,k-1) - 4*T(n-2,k-1) - T(n-2,k-2), T(0,0) = T(1,1) = 1, T(1,0) = 0, T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Oct 31 2013
From G. C. Greubel, Sep 07 2022: (Start)
T(n, n) = 1.
T(n, n-1) = -4*A000217(n-1), n >= 1.
T(n, n-2) = (-4)^2 * A000332(n), n >= 2.
T(n, n-3) = (-4)^3 * A000579(n), n >= 3.
T(n, n-4) = (-4)^4 * A000581(n), n >= 4.
T(2*n, n) = A262710(n). (End)

A117435 Triangle related to exp(x)*cos(2*x).

Original entry on oeis.org

1, 0, 1, -4, 0, 1, 0, -12, 0, 1, 16, 0, -24, 0, 1, 0, 80, 0, -40, 0, 1, -64, 0, 240, 0, -60, 0, 1, 0, -448, 0, 560, 0, -84, 0, 1, 256, 0, -1792, 0, 1120, 0, -112, 0, 1, 0, 2304, 0, -5376, 0, 2016, 0, -144, 0, 1, -1024, 0, 11520, 0, -13440, 0, 3360, 0, -180, 0, 1
Offset: 0

Views

Author

Paul Barry, Mar 16 2006

Keywords

Comments

Diagonals correspond to rows of A117438.

Examples

			Triangle begins:
    1;
    0,   1;
   -4,   0,   1;
    0, -12,   0,   1;
   16,   0, -24,   0,   1;
    0,  80,   0, -40,   0, 1;
  -64,   0, 240,   0, -60, 0, 1;
		

Crossrefs

Cf. A006495 (row sums), A117411, A117436 (inverse), A117438.

Programs

  • Mathematica
    T[n_,k_]:= Binomial[n,k]*(2*I)^(n-k)*(1+(-1)^(n+k))/2;
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 01 2021 *)
  • Sage
    flatten([[binomial(n,k)*(2*i)^(n-k)*(1+(-1)^(n+k))/2 for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 01 2021

Formula

Number triangle whose k-th column has e.g.f. (x^k/k!)*cos(2x);
T(n, k) = binomial(n,k) * (-4)^((n-k)/2) * (1+(-1)^(n-k))/2.
Sum_{k=0..n} T(n, k) = A006495(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = i^n * ((1+(-1)^n)/2) * (2*floor(n/2) + 1). - G. C. Greubel, Jun 01 2021

A116483 Expansion of (1 + x) / (5*x^2 - 2*x + 1).

Original entry on oeis.org

1, 3, 1, -13, -31, 3, 161, 307, -191, -1917, -2879, 3827, 22049, 24963, -60319, -245453, -189311, 848643, 2643841, 1044467, -11130271, -27482877, 685601, 138785587, 274143169, -145641597, -1661999039, -2595790093, 3118415009, 19215780483
Offset: 0

Views

Author

Creighton Dement, Feb 17 2006

Keywords

Comments

Binomial transform of signed powers of 2: (1, 2, -4, -8, 16, 32, -64, -128, ...).
Inverse binonomial transform of (1, 4, 8, 0, -64, -256, -512, 0, 4096, 16384, 32768, 0, -262144, -1048576, -2097152, 0, ...).
G.f.*(1-x)/(1+x) (i.e, convolution with 1,-2,2,-2,2,-2, ... ) yields A006495.
Floretion Algebra Multiplication Program, FAMP Code: 2ibaseforseq[A*B] with A = - .5'i + .5'j - .5i' + .5j' + 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj' and B = - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki' ;

Crossrefs

Programs

  • PARI
    a(n)={local(v=Vec((1+2*I*x)^n)); sum(k=1,#v, real(v[k])+imag(v[k]));}
    /* cf. A138749 */ /* Joerg Arndt, Jul 06 2011 */
    
  • PARI
    Vec((1 + x) / (5*x^2 - 2*x + 1) + O(x^50)) \\ Colin Barker, Aug 25 2017

Formula

a(n) = 2*a(n-1) -5*a(n-2). - Paul Curtz, Apr 18 2011
a(n) = (1/2 + i/2)*((1 - 2*i)^n - i*(1 + 2*i)^n) where i=sqrt(-1). - Colin Barker, Aug 25 2017

A120743 a(n) = (1/2)*(1 + 3*i)^n + (1/2)*(1 - 3*i)^n where i = sqrt(-1).

Original entry on oeis.org

1, -8, -26, 28, 316, 352, -2456, -8432, 7696, 99712, 122464, -752192, -2729024, 2063872, 31417984, 42197248, -229785344, -881543168, 534767104, 9884965888, 14422260736, -70005137408, -284232882176, 131585609728, 3105500041216
Offset: 1

Views

Author

Creighton Dement, Jun 11 2007

Keywords

Comments

From R. J. Mathar, Jun 15 2007: (Start)
These are the row sums of the triangle A013610 after every 2nd column is deleted, then every 2nd column reversed in sign, creating an intermediate irregular triangle with entries C(n,2*k)*(-9)^k, k = 0..floor(n/2):
1;
1, -9;
1, -27;
1, -54, 81;
1, -90, 405;
1, -135, 1215, -729;
1, -189, 2835, -5103;
1, -252, 5670, -20412, 6561;
1, -324, 10206, -61236, 59049;
1, -405, 17010, -153090, 295245, -59049; (End)
Floretion Algebra Multiplication Program, FAMP Code: 2tesseq[A*B] with A = + 1.5i' + .5j' + .5k' + .5e and B = 'ji' + e

Crossrefs

Programs

  • Magma
    [ n eq 1 select 1 else n eq 2 select -8 else 2*Self(n-1) -10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 24 2011
    
  • Mathematica
    LinearRecurrence[{2,-10}, {1,-8}, 30] (* G. C. Greubel, Nov 09 2018 *)
  • PARI
    x='x+O('x^30); Vec((1-10*x)/(1-2*x+10*x^2)) \\ G. C. Greubel, Nov 09 2018

Formula

a(n) = 2*a(n-1) - 10*a(n-2).
G.f.: x*(1-10*x)/(10*x^2 - 2*x + 1).
a(n) mod 9 = 1. - Paul Curtz, Apr 20 2011
G.f.: G(0)/(2*x) - 1/x, where G(k) = 1 + 1/(1 - x*(9*k+1)/(x*(9*k+10) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 29 2013
E.g.f.: exp(x)*cos(3*x). - Sergei N. Gladkovskii, May 29 2013
a(n) = A190958(n)-10*A190958(n-1). - R. J. Mathar, Dec 13 2022

Extensions

a(0)=1: a(n) is main diagonal of A009116(n). - Paul Curtz, Jul 22 2011
Edited by Jon E. Schoenfield, Nov 09 2018

A120905 Real part of (1 + 2i)^(2^n) where i is sqrt(-1).

Original entry on oeis.org

1, -3, -7, -527, 164833, -98248054847, -3977703802948722503807, -510456831154766758152181998159655209453904127
Offset: 0

Views

Author

Gary W. Adamson, Jul 14 2006

Keywords

Comments

The next term a(8) has 90 digits and is too large to be displayed here.

Examples

			a(3) = -527 since (1 + 2i)^8 = (-527 + 336i) = A006495(8).
		

Crossrefs

Cf. A006495.

Programs

  • Maple
    a:= n-> Re((1 + 2*I)^(2^n));
    seq (a(n), n=0..10);
  • Mathematica
    Table[Re[(1 + 2I)^(2^n)], {n, 0, 8}] (* Stefan Steinerberger, Jul 23 2006 *)

Formula

a(n) = A006495(2^n).
a(n) = real part of (2 + sqrt(-1))^(2^n) for n >= 0.

Extensions

Corrected and extended by Stefan Steinerberger and Emeric Deutsch, Jul 23 2006

A292495 Triangle read by rows: T(n,k) = (-2)*T(n-1,k-1) + T(n,k-1) with T(2*m,0) = 0 and T(2*m+1,0) = (-1)^m.

Original entry on oeis.org

0, 1, 1, 0, -2, -4, -1, -1, 3, 11, 0, 2, 4, -2, -24, 1, 1, -3, -11, -7, 41, 0, -2, -4, 2, 24, 38, -44, -1, -1, 3, 11, 7, -41, -117, -29, 0, 2, 4, -2, -24, -38, 44, 278, 336, 1, 1, -3, -11, -7, 41, 117, 29, -527, -1199, 0, -2, -4, 2, 24, 38, -44, -278, -336, 718
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2017

Keywords

Examples

			First few rows are:
   0;
   1,  1;
   0, -2, -4;
  -1, -1,  3,  11;
   0,  2,  4,  -2, -24;
   1,  1, -3, -11,  -7,  41;
   0, -2, -4,   2,  24,  38,  -44;
  -1, -1,  3,  11,   7, -41, -117, -29;
   0,  2,  4,  -2, -24, -38,   44, 278, 336.
		

Crossrefs

The diagonal of the triangle is related to A099456.
The next diagonal of the triangle is related to A139011.
T(n,k) = b*T(n-1,k-1) + T(n,k-1): A292789 (b=-3), this sequence (b=-2), A117918 and A228405 (b=1), A227418 (b=2), A292466 (b=4).

Formula

T(n+1,n)^2 + T(n,n)^2 = 5^n.

A349195 a(n) is the X-coordinate of the n-th point of the R5 dragon curve; A349196 gives Y-coordinates.

Original entry on oeis.org

0, 1, 1, 0, 0, 1, 1, 0, 0, -1, -1, -2, -2, -1, -1, -2, -2, -3, -3, -4, -4, -3, -3, -4, -4, -3, -3, -4, -4, -5, -5, -6, -6, -5, -5, -6, -6, -5, -5, -4, -4, -5, -5, -4, -4, -5, -5, -6, -6, -7, -7, -8, -8, -7, -7, -8, -8, -7, -7, -6, -6, -5, -5, -6, -6, -5, -5
Offset: 0

Views

Author

Rémy Sigrist, Nov 10 2021

Keywords

Comments

The R5 dragon curve can be represented using an L-system.

Examples

			The R5 dragon curve starts as follows:
         +-----+
       24|   25
         |
         |
         +-----+     +-----+     +-----+
       23    22|   11|   10|    7|    6|
               |     |     |     |     |
             21|   12|    9|    8|     |
         +-----+-----+-----+-----+-----+
       20|   17|   16|   13|    4|    5
         |     |     |     |     |
         |     |     |     |     |
         +-----+     +-----+     +-----+
       19    18    15    14     3     2|
                                       |
                                       |
                                 +-----+
                                0     1
- so a(0) = a(3) = a(4) = a(7) = a(8) = 0,
     a(1) = a(2) = a(5) = a(6) = 1,
     a(9) = a(10) = a(13) = a(14) = -1.
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

a(5^k) = A006495(k) for any k >= 0.

A179087 Triangle T(n,k) read by rows: the real part of the coefficient [x^k] of (1-x)^(n+1) * Sum_{s>=0} ((2*s + 1 + 2*i)^n)*x^s, where i is the imaginary unit.

Original entry on oeis.org

1, 1, 1, -3, 14, -3, -11, 35, 35, -11, -7, -84, 566, -84, -7, 41, -843, 2722, 2722, -843, 41, 117, -2854, 763, 50028, 763, -2854, 117, 29, -4681, -80211, 407423, 407423, -80211, -4681, 29, -527, 4504, -720740, 1560616, 8634214, 1560616, -720740, 4504, -527, -1199, 68393, -4275340, -6925948, 104031374, 104031374, -6925948, -4275340, 68393, -1199, 237, 338918, -19903639, -195090616, 799237802, 2546725796, 799237802, -195090616
Offset: 0

Views

Author

Roger L. Bagula, Jun 28 2010

Keywords

Examples

			Triangle begins
    1;
    1,     1;
   -3,    14,     -3;
  -11,    35,     35,    -11;
   -7,   -84,    566,    -84,     -7;
   41,  -843,   2722,   2722,   -843,     41;
  117, -2854,    763,  50028,    763,  -2854,   117;
   29, -4681, -80211, 407423, 407423, -80211, -4681, 29;
		

Crossrefs

Cf. A000165 (row sums), A006495 (column k=0).

Programs

  • Maple
    A179087 := proc(n,k)
            (1-x)^(n+1)*add( (2*s+1+2*I)^n*x^s,s=0..k) ;
            expand(%) ;
            coeftayl(%,x=0,k) ;
            Re(%) ;
    end proc: # R. J. Mathar, Oct 06 2011

Extensions

Sequence replaced with one that is more likely to occur in practice by R. J. Mathar, Oct 06 2011

A221131 Table, T, read by antidiagonals where T(-j,k) = ((1+sqrt(j))^k + (1-sqrt(j))^k)/2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, -2, 1, 1, 1, -2, -5, -4, 1, 1, 1, -3, -8, -7, -4, 1, 1, 1, -4, -11, -8, 1, 0, 1, 1, 1, -5, -14, -7, 16, 23, 8, 1, 1, 1, -6, -17, -4, 41, 64, 43, 16, 1, 1, 1, -7, -20, 1, 76, 117, 64, 17, 16, 1, 1, 1, -8, -23, 8, 121, 176, 29, -128, -95, 0, 1
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com) and Robert G. Wilson v, Jan 02 2013

Keywords

Comments

.j\k.........0..1...2....3...4....5....6......7.......8......9......10
.0: A000012..1..1...1....1...1....1....1......1.......1......1.......1
-1: A146559..1..1...0...-2..-4...-4....0......8......16.....16.......0
-2: A087455..1..1..-1...-5..-7....1...23.....43......17....-95....-241
-3: A138230..1..1..-2...-8..-8...16...64.....64....-128...-512....-512
-4: A006495..1..1..-3..-11..-7...41..117.....29....-527..-1199.....237
-5: A138229..1..1..-4..-14..-4...76..176...-104...-1264..-1904....3776
-6: A090592..1..1..-5..-17...1..121..235...-377...-2399..-2159...12475
-7: A090590..1..1..-6..-20...8..176..288...-832...-3968..-1280...29184
-8: A025172..1..1..-7..-23..17..241..329..-1511...-5983...1633...57113
-9: A120743..1..1..-8..-26..28..316..352..-2456...-8432...7696...99712
-10: ........1..1..-9..-29..41..401..351..-3709..-11279..18241..160551

Crossrefs

Programs

  • Mathematica
    T[j_, k_] := Expand[((1 + Sqrt[j])^k + (1 - Sqrt[j])^k)/2]; Table[ T[ -j + k, k], {j, 0, 11}, {k, 0, j}] // Flatten
Previous Showing 11-20 of 21 results. Next