A116484
Expansion of (-1+3*x)/(5*x^2 + 1 - 2*x).
Original entry on oeis.org
-1, 1, 7, 9, -17, -79, -73, 249, 863, 481, -3353, -9111, -1457, 42641, 92567, -28071, -518977, -897599, 799687, 6087369, 8176303, -14084239, -69049993, -67678791, 209892383, 758178721, 466895527, -2857102551, -8048682737, -1811852719
Offset: 0
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222.
- J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222. [Annotated scanned copy]
- Index entries for linear recurrences with constant coefficients, signature (2,-5).
-
CoefficientList[Series[(-1+3x)/(5x^2+1-2x),{x,0,40}],x] (* or *) LinearRecurrence[{2,-5},{-1,1},40] (* Harvey P. Dale, Jun 24 2013 *)
A117411
Skew triangle associated to the Euler numbers.
Original entry on oeis.org
1, 0, 1, 0, -4, 1, 0, 0, -12, 1, 0, 0, 16, -24, 1, 0, 0, 0, 80, -40, 1, 0, 0, 0, -64, 240, -60, 1, 0, 0, 0, 0, -448, 560, -84, 1, 0, 0, 0, 0, 256, -1792, 1120, -112, 1, 0, 0, 0, 0, 0, 2304, -5376, 2016, -144, 1, 0, 0, 0, 0, 0, -1024, 11520, -13440, 3360, -180, 1, 0, 0, 0, 0, 0, 0, -11264, 42240, -29568, 5280, -220, 1
Offset: 0
Triangle begins
1;
0, 1;
0, -4, 1;
0, 0, -12, 1;
0, 0, 16, -24, 1;
0, 0, 0, 80, -40, 1;
0, 0, 0, -64, 240, -60, 1;
0, 0, 0, 0, -448, 560, -84, 1;
0, 0, 0, 0, 256, -1792, 1120, -112, 1;
0, 0, 0, 0, 0, 2304, -5376, 2016, -144, 1;
0, 0, 0, 0, 0, -1024, 11520, -13440, 3360, -180, 1;
0, 0, 0, 0, 0, 0, -11264, 42240, -29568, 5280, -220, 1;
0, 0, 0, 0, 0, 0, 4096, -67584, 126720, -59136, 7920, -264, 1;
-
A117411:= func< n,k | (-4)^(n-k)*(&+[Binomial(n,k-j)*Binomial(j,n-k): j in [0..n-k]]) >;
[A117411(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Sep 07 2022
-
T[n_,k_]:= T[n,k]= (-4)^(n-k)*Sum[Binomial[n, k-j]*Binomial[j, n-k], {j,0,n-k}];
Table[T[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 07 2022 *)
-
def A117411(n,k): return (-4)^(n-k)*sum(binomial(n,k-j)*binomial(j,n-k) for j in (0..n-k))
flatten([[A117411(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Sep 07 2022
A117435
Triangle related to exp(x)*cos(2*x).
Original entry on oeis.org
1, 0, 1, -4, 0, 1, 0, -12, 0, 1, 16, 0, -24, 0, 1, 0, 80, 0, -40, 0, 1, -64, 0, 240, 0, -60, 0, 1, 0, -448, 0, 560, 0, -84, 0, 1, 256, 0, -1792, 0, 1120, 0, -112, 0, 1, 0, 2304, 0, -5376, 0, 2016, 0, -144, 0, 1, -1024, 0, 11520, 0, -13440, 0, 3360, 0, -180, 0, 1
Offset: 0
Triangle begins:
1;
0, 1;
-4, 0, 1;
0, -12, 0, 1;
16, 0, -24, 0, 1;
0, 80, 0, -40, 0, 1;
-64, 0, 240, 0, -60, 0, 1;
-
T[n_,k_]:= Binomial[n,k]*(2*I)^(n-k)*(1+(-1)^(n+k))/2;
Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 01 2021 *)
-
flatten([[binomial(n,k)*(2*i)^(n-k)*(1+(-1)^(n+k))/2 for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 01 2021
A116483
Expansion of (1 + x) / (5*x^2 - 2*x + 1).
Original entry on oeis.org
1, 3, 1, -13, -31, 3, 161, 307, -191, -1917, -2879, 3827, 22049, 24963, -60319, -245453, -189311, 848643, 2643841, 1044467, -11130271, -27482877, 685601, 138785587, 274143169, -145641597, -1661999039, -2595790093, 3118415009, 19215780483
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222.
- J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222. [Annotated scanned copy]
- Index entries for linear recurrences with constant coefficients, signature (2,-5).
-
a(n)={local(v=Vec((1+2*I*x)^n)); sum(k=1,#v, real(v[k])+imag(v[k]));}
/* cf. A138749 */ /* Joerg Arndt, Jul 06 2011 */
-
Vec((1 + x) / (5*x^2 - 2*x + 1) + O(x^50)) \\ Colin Barker, Aug 25 2017
A120743
a(n) = (1/2)*(1 + 3*i)^n + (1/2)*(1 - 3*i)^n where i = sqrt(-1).
Original entry on oeis.org
1, -8, -26, 28, 316, 352, -2456, -8432, 7696, 99712, 122464, -752192, -2729024, 2063872, 31417984, 42197248, -229785344, -881543168, 534767104, 9884965888, 14422260736, -70005137408, -284232882176, 131585609728, 3105500041216
Offset: 1
-
[ n eq 1 select 1 else n eq 2 select -8 else 2*Self(n-1) -10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 24 2011
-
LinearRecurrence[{2,-10}, {1,-8}, 30] (* G. C. Greubel, Nov 09 2018 *)
-
x='x+O('x^30); Vec((1-10*x)/(1-2*x+10*x^2)) \\ G. C. Greubel, Nov 09 2018
A120905
Real part of (1 + 2i)^(2^n) where i is sqrt(-1).
Original entry on oeis.org
1, -3, -7, -527, 164833, -98248054847, -3977703802948722503807, -510456831154766758152181998159655209453904127
Offset: 0
a(3) = -527 since (1 + 2i)^8 = (-527 + 336i) = A006495(8).
-
a:= n-> Re((1 + 2*I)^(2^n));
seq (a(n), n=0..10);
-
Table[Re[(1 + 2I)^(2^n)], {n, 0, 8}] (* Stefan Steinerberger, Jul 23 2006 *)
A292495
Triangle read by rows: T(n,k) = (-2)*T(n-1,k-1) + T(n,k-1) with T(2*m,0) = 0 and T(2*m+1,0) = (-1)^m.
Original entry on oeis.org
0, 1, 1, 0, -2, -4, -1, -1, 3, 11, 0, 2, 4, -2, -24, 1, 1, -3, -11, -7, 41, 0, -2, -4, 2, 24, 38, -44, -1, -1, 3, 11, 7, -41, -117, -29, 0, 2, 4, -2, -24, -38, 44, 278, 336, 1, 1, -3, -11, -7, 41, 117, 29, -527, -1199, 0, -2, -4, 2, 24, 38, -44, -278, -336, 718
Offset: 0
First few rows are:
0;
1, 1;
0, -2, -4;
-1, -1, 3, 11;
0, 2, 4, -2, -24;
1, 1, -3, -11, -7, 41;
0, -2, -4, 2, 24, 38, -44;
-1, -1, 3, 11, 7, -41, -117, -29;
0, 2, 4, -2, -24, -38, 44, 278, 336.
The diagonal of the triangle is related to
A099456.
The next diagonal of the triangle is related to
A139011.
A349195
a(n) is the X-coordinate of the n-th point of the R5 dragon curve; A349196 gives Y-coordinates.
Original entry on oeis.org
0, 1, 1, 0, 0, 1, 1, 0, 0, -1, -1, -2, -2, -1, -1, -2, -2, -3, -3, -4, -4, -3, -3, -4, -4, -3, -3, -4, -4, -5, -5, -6, -6, -5, -5, -6, -6, -5, -5, -4, -4, -5, -5, -4, -4, -5, -5, -6, -6, -7, -7, -8, -8, -7, -7, -8, -8, -7, -7, -6, -6, -5, -5, -6, -6, -5, -5
Offset: 0
The R5 dragon curve starts as follows:
+-----+
24| 25
|
|
+-----+ +-----+ +-----+
23 22| 11| 10| 7| 6|
| | | | |
21| 12| 9| 8| |
+-----+-----+-----+-----+-----+
20| 17| 16| 13| 4| 5
| | | | |
| | | | |
+-----+ +-----+ +-----+
19 18 15 14 3 2|
|
|
+-----+
0 1
- so a(0) = a(3) = a(4) = a(7) = a(8) = 0,
a(1) = a(2) = a(5) = a(6) = 1,
a(9) = a(10) = a(13) = a(14) = -1.
A179087
Triangle T(n,k) read by rows: the real part of the coefficient [x^k] of (1-x)^(n+1) * Sum_{s>=0} ((2*s + 1 + 2*i)^n)*x^s, where i is the imaginary unit.
Original entry on oeis.org
1, 1, 1, -3, 14, -3, -11, 35, 35, -11, -7, -84, 566, -84, -7, 41, -843, 2722, 2722, -843, 41, 117, -2854, 763, 50028, 763, -2854, 117, 29, -4681, -80211, 407423, 407423, -80211, -4681, 29, -527, 4504, -720740, 1560616, 8634214, 1560616, -720740, 4504, -527, -1199, 68393, -4275340, -6925948, 104031374, 104031374, -6925948, -4275340, 68393, -1199, 237, 338918, -19903639, -195090616, 799237802, 2546725796, 799237802, -195090616
Offset: 0
Triangle begins
1;
1, 1;
-3, 14, -3;
-11, 35, 35, -11;
-7, -84, 566, -84, -7;
41, -843, 2722, 2722, -843, 41;
117, -2854, 763, 50028, 763, -2854, 117;
29, -4681, -80211, 407423, 407423, -80211, -4681, 29;
-
A179087 := proc(n,k)
(1-x)^(n+1)*add( (2*s+1+2*I)^n*x^s,s=0..k) ;
expand(%) ;
coeftayl(%,x=0,k) ;
Re(%) ;
end proc: # R. J. Mathar, Oct 06 2011
Sequence replaced with one that is more likely to occur in practice by
R. J. Mathar, Oct 06 2011
A221131
Table, T, read by antidiagonals where T(-j,k) = ((1+sqrt(j))^k + (1-sqrt(j))^k)/2.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, -2, 1, 1, 1, -2, -5, -4, 1, 1, 1, -3, -8, -7, -4, 1, 1, 1, -4, -11, -8, 1, 0, 1, 1, 1, -5, -14, -7, 16, 23, 8, 1, 1, 1, -6, -17, -4, 41, 64, 43, 16, 1, 1, 1, -7, -20, 1, 76, 117, 64, 17, 16, 1, 1, 1, -8, -23, 8, 121, 176, 29, -128, -95, 0, 1
Offset: 0
-
T[j_, k_] := Expand[((1 + Sqrt[j])^k + (1 - Sqrt[j])^k)/2]; Table[ T[ -j + k, k], {j, 0, 11}, {k, 0, j}] // Flatten
Comments