cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 37 results. Next

A201511 Number of ways to place n nonattacking wazirs on an n X n board.

Original entry on oeis.org

1, 1, 2, 22, 405, 10741, 368868, 15516804, 771464278, 44218721793, 2868879752822, 207739939478618, 16602826428818482, 1451305771147909684, 137715836041691050398, 14096224186664736126206, 1547966111897855935957132, 181519663430661533452513680, 22636566614411901986006002896
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 02 2011

Keywords

Comments

Wazir is a leaper [0,1].

Crossrefs

Formula

Asymptotics (Vaclav Kotesovec, Nov 29 2011): a(n) ~ n^(2n)/n!*exp(-5/2).

Extensions

a(19)-a(20) from Vaclav Kotesovec, Aug 30 2016
a(0)=1 prepended by Alois P. Heinz, Apr 16 2024

A232833 Triangle read by rows: T(n,k) = number of n X n binary matrices with k pairwise nonadjacent 1's, n >= 0, k = 0..n^2.

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 0, 0, 1, 9, 24, 22, 6, 1, 0, 0, 0, 0, 1, 16, 96, 276, 405, 304, 114, 20, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 25, 260, 1474, 5024, 10741, 14650, 12798, 7157, 2578, 618, 106, 14, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 36, 570, 5248, 31320, 127960, 368868
Offset: 0

Views

Author

Heinrich Ludwig, Dec 01 2013

Keywords

Comments

Also number of ways to place k non-attacking wazirs on an n X n board.
Two matrix elements are considered adjacent if the difference of their row indices is 1 and the column indices are equal, or vice versa (von Neumann neighborhood).
If only non-equivalent (mod D_4) matrices are counted, the corresponding numbers are given by A232569.
Rows with trailing zeros dropped give the coefficients of the independence polynomial for the n X n grid graph. - Eric W. Weisstein, May 31 2017

Examples

			Triangle begins:
  1;
  1,  1;
  1,  4,  2,   0,   0;
  1,  9, 24,  22,   6,   1,   0,  0, 0, 0;
  1, 16, 96, 276, 405, 304, 114, 20, 2, 0, 0, 0, 0, 0, 0, 0, 0;
  ...
		

Crossrefs

Cf. A232569, A006506 (row sums).
Main diagonal gives A201511.

Programs

  • Maple
    b:= proc(n, l) option remember; local k;
          if n=0 then 1
        elif min(l)>0 then b(n-1, map(x-> x-1, l))
        else for k while l[k]>0 do od;
             b(n, subsop(k=1, l))+expand(x*`if`(n>0, `if`(k (p-> seq(coeff(p,x,i), i=0..n^2))(b(n, [0$n])):
    seq(T(n), n=0..6);  # Alois P. Heinz, Apr 16 2024
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{k},
       Which[n == 0, 1,
       Min[l] > 0, b[n - 1, l - 1],
       True, For[k = 1, l[[k]] > 0, k++];
          b[n, ReplacePart[l, k -> 1]] + Expand[x*If[n > 0, If[k < Length[l],
          b[n, ReplacePart[l, {k -> 2, k + 1 -> 1}]],
          b[n, ReplacePart[l, k -> 2]], 0]]]]];
    T[n_] := With[{p = b[n, Table[0, {n}]]}, Table[Coefficient[p, x, i], {i, 0, n^2}]]
    Table[T[n], {n, 0, 6}] // Flatten (* Jean-François Alcover, Aug 09 2024, after Alois P. Heinz *)

Formula

T(n,0) = A000012(n);
T(n,1) = A000290(n), n >= 1;
T(n,2) = A172225(n), n >= 2;
T(n,3) = A172226(n), n >= 2;
T(n,4) = A172227(n), n >= 2;
T(n,5) = A172228(n), n >= 3;
T(n,6) = A178409(n), n >= 3;
T(n,7) = A201507(n), n >= 3;
T(n,8) = A201508(n), n >= 3;
T(n,9) = A201510(n), n >= 3;

Extensions

T(0,0)=1 inserted by Alois P. Heinz, Apr 16 2024

A067960 Number of binary arrangements without adjacent 1's on n X n torus connected ne-sw nw-se.

Original entry on oeis.org

1, 9, 34, 961, 25531, 2722500, 464483559, 224546142769, 215560806324388, 509113406167679889, 2590618817013278596997, 30737628149641669227004804, 809724336154415150287031740151, 48754690373355654118816600200711441
Offset: 1

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Comments

If n is odd then A067960(n) = A027683(n).
a(18) = 2184710661251680812138610069332410066909052859790416601664. (a(17) = ?) - Vaclav Kotesovec, Sep 16 2014
a(20) = 61548416926224234005237372092957872593295040887178016957765412173582481. - Vaclav Kotesovec, May 18 2021

Examples

			Neighbors for n=4 (dots represent spaces):
.  \ /\ /\ /\ /
.   o..o..o..o
.  / \/ \/ \/ \
.  \ /\ /\ /\ /
.   o..o..o..o
.  / \/ \/ \/ \
.  \ /\ /\ /\ /
.   o..o..o..o
.  / \/ \/ \/ \
.  \ /\ /\ /\ /
.   o..o..o..o
.  / \/ \/ \/ \
		

Crossrefs

Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.
Cf. A212271.

Extensions

Terms a(12)-a(16) from Vaclav Kotesovec, May 18 2012

A067962 a(n) = F(n+2)*(Product_{i=1..n+1} F(i))^2 where F(i)=A000045(i) is the i-th Fibonacci number.

Original entry on oeis.org

1, 2, 12, 180, 7200, 748800, 204422400, 145957593600, 272940700032000, 1336044726656640000, 17122749216831498240000, 574502481723130428948480000, 50464872497041500009263431680000, 11605406728144633757130311383449600000
Offset: 0

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Comments

Number of binary arrangements without adjacent 1's on n X n array connected nw-se.
Kitaev and Mansour give a general formula for the number of binary m X n matrices avoiding certain configurations.

Examples

			Neighbors for n=4 (dots represent spaces, circles represent grid points):
O..O..O..O
.\..\..\..
..\..\..\.
O..O..O..O
.\..\..\..
..\..\..\.
O..O..O..O
.\..\..\..
..\..\..\.
O..O..O..O
		

Crossrefs

Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.

Programs

  • Haskell
    a067962 n = a067962_list !! n
    a067962_list = 1 : zipWith (*) a067962_list (drop 2 a001654_list)
    -- Reinhard Zumkeller, Sep 24 2015
  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, (F->
          F(n+1)*F(n+2)*a(n-1))(combinat[fibonacci]))
        end:
    seq(a(n), n=0..14);  # Alois P. Heinz, May 20 2019
  • Mathematica
    Rest[Table[With[{c=Fibonacci[Range[n]]},(Times@@Most[c])^2 Last[c]],{n,15}]] (* Harvey P. Dale, Dec 17 2013 *)
  • PARI
    a(n)=fibonacci(n+2)*prod(i=0,n,fibonacci(i+1))^2
    

Formula

a(n) = (F(3) * F(4) * ... * F(n+1))^2 * F(n+2), where F(n) = A000045(n) is the n-th Fibonacci number.
a(n) is asymptotic to C^2*((1+sqrt(5))/2)^((n+2)^2)/(5^(n+3/2)) where C=1.226742010720353244... is the Fibonacci Factorial Constant, see A062073. - Vaclav Kotesovec, Oct 28 2011
a(n) = a(n-1) * A001654(n+1), n > 0. - Reinhard Zumkeller, Sep 24 2015

Extensions

Edited by Dean Hickerson, Feb 15 2002
Revised by N. J. A. Sloane following comments from Benoit Cloitre, Nov 12 2003

A067958 Number of binary arrangements without adjacent 1's on n X n torus connected e-w ne-sw n-s nw-se.

Original entry on oeis.org

1, 5, 10, 133, 1411, 42938, 1796859, 157763829, 22909432780, 6291183426165, 3032485231813445, 2674030233698391466, 4216437656471537450175, 12038380931111061789962901, 61810608197507432888286102310, 572863067272579464080483552434421
Offset: 1

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Comments

For n > 1, a(n) is also the number of ways to populate an n X n toroidal chessboard with non-attacking kings (including the case of zero kings). - Vaclav Kotesovec, Oct 10 2011

Examples

			Neighbors for n=4:
  :\|/\|/\|/\|/
  :-o--o--o--o-
  :/|\/|\/|\/|\
  :\|/\|/\|/\|/
  :-o--o--o--o-
  :/|\/|\/|\/|\
  :\|/\|/\|/\|/
  :-o--o--o--o-
  :/|\/|\/|\/|\
  :\|/\|/\|/\|/
  :-o--o--o--o-
  :/|\/|\/|\/|\
		

Crossrefs

Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.
Cf. A212269.

Extensions

a(14) from Vaclav Kotesovec, Aug 22 2016
a(15)-a(16) from Vaclav Kotesovec, May 15 2021

A067963 Number of binary arrangements without adjacent 1's on n X n array connected e-w ne-sw nw-se.

Original entry on oeis.org

2, 7, 77, 1152, 56549, 3837761, 806190208, 251170142257, 223733272186825, 319544298135448960, 1210302996752248488817, 7876274672755293629849313, 127662922218147601317696761088, 3758866349549535184419575245899295
Offset: 1

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Examples

			Neighbors for n=4 (dots represent spaces):
. o--o--o--o
...\/ \/ \/
.../\ /\ /\
. o--o--o--o
...\/ \/ \/
.../\ /\ /\
. o--o--o--o
...\/ \/ \/
.../\ /\ /\
. o--o--o--o
		

Crossrefs

Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.
Diagonal of A228683

Extensions

Terms a(15)-a(19) from Vaclav Kotesovec, May 01 2012

A067964 Number of binary arrangements without adjacent 1's on n X n array connected n-s nw-se.

Original entry on oeis.org

2, 8, 90, 1876, 103484, 11462588, 3118943536, 1808994829500, 2465526600093372, 7394315828592829424, 50975951518289853305508, 784977037926751747674903856, 27509351187362150581313065415008, 2167705218542258344490649896364635660, 387057670485382113845659790427906287869964
Offset: 1

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Examples

			Neighbors for n=4 (dots represent spaces):
. o..o..o..o
. |\ |\ |\ |
. | \| \| \|
. o..o..o..o
. |\ |\ |\ |
. | \| \| \|
. o..o..o..o
. |\ |\ |\ |
. | \| \| \|
. o..o..o..o
		

Crossrefs

Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.

Formula

Limit n->infinity (a(n))^(1/n^2) = 1.503048082... (see A085850)

Extensions

Terms a(14)-a(18) from Vaclav Kotesovec, May 01 2012

A172227 Number of ways to place 4 nonattacking wazirs on an n X n board.

Original entry on oeis.org

0, 0, 6, 405, 5024, 31320, 133544, 446421, 1258590, 3126724, 7042930, 14669709, 28658436, 53069000, 93909924, 159819965, 262913874, 419816676, 652912510, 991835749, 1475233800, 2152832664, 3087838016, 4359706245, 6067321574, 8332617060, 11304678954
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Comments

A wazir is a (fairy chess) leaper [0,1].

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- x^2 (4 x^8 - 26 x^7 + 3 x^6 + 303 x^5 - 736 x^4 + 180 x^3 + 1595 x^2 + 351 x + 6) / (x - 1)^9, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2013 *)

Formula

a(n) = (n^8-30n^6+24n^5+323n^4-504n^3-1110n^2+2760n-1224)/24, n>=3.
G.f.: -x^3*(4*x^8-26*x^7+3*x^6+303*x^5-736*x^4+180*x^3+1595*x^2+351*x+6)/(x-1)^9. - Vaclav Kotesovec, Apr 29 2011
a(n) = A232833(n,4). - R. J. Mathar, Apr 11 2024

Extensions

Corrected a(3) and g.f., Vaclav Kotesovec, Apr 29 2011

A067959 Number of binary arrangements without adjacent 1's on n X n torus connected ne-sw n-s nw-se.

Original entry on oeis.org

1, 7, 22, 547, 9021, 812830, 70046159, 24082448515, 10363980496342, 14228018243052057, 29400555005986658803, 166705587265151114516638, 1606507128309318588452521527, 38505096862341023166325442747581, 1696028983502674228038462924646464012
Offset: 1

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Examples

			Neighbors for n=4 (dots represent spaces):
.\|/\|/\|/\|/
. o..o..o..o
./|\/|\/|\/|\
.\|/\|/\|/\|/
. o..o..o..o
./|\/|\/|\/|\
.\|/\|/\|/\|/
. o..o..o..o
./|\/|\/|\/|\
.\|/\|/\|/\|/
. o..o..o..o
./|\/|\/|\/|\
		

Crossrefs

Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.

Extensions

a(13) from Vaclav Kotesovec, Aug 22 2016
a(14) from Vaclav Kotesovec, May 24 2021
a(15) from Sean A. Irvine, Jan 14 2024

A172228 Number of ways to place 5 nonattacking wazirs on an n X n board.

Original entry on oeis.org

0, 0, 1, 304, 10741, 127960, 870589, 4197456, 16005187, 51439096, 145085447, 369074128, 863338777, 1883786680, 3875953561, 7583888944, 14206566327, 25617069208, 44663199283, 75572017136, 124485188701, 200156902936, 314851577749, 485484612496, 735056106571, 1094434774968
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Comments

Wazir is a (fairy chess) leaper [0,1].

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^2 (6 x^11 - 26 x^10 - 93 x^9 + 527 x^8 + 490 x^7 - 6710 x^6 + 13630 x^5 - 3954 x^4 - 26364 x^3 - 7452 x^2 - 293 x - 1) / (x - 1)^11, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2013 *)

Formula

a(n) = (n^10-50n^8+40n^7+995n^6-1560n^5-8890n^4+21080n^3+24264n^2-97440n+59520)/120, n>=4.
For any fixed value of k > 1, a(n) = n^(2k)/k! - 5/2/(k-2)!*n^(2k-2) + ...
G.f.: x^3 * (6*x^11 -26*x^10 -93*x^9 +527*x^8 +490*x^7 -6710*x^6 +13630*x^5 -3954*x^4 -26364*x^3 -7452*x^2 -293*x -1) / (x-1)^11. - Vaclav Kotesovec, Apr 29 2011
a(n) = A232833(n,5). - R. J. Mathar, Apr 11 2024

Extensions

Corrected a(4) and g.f., Vaclav Kotesovec, Apr 29 2011.
More terms from Vincenzo Librandi, May 28 2013
Previous Showing 11-20 of 37 results. Next