cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 108 results. Next

A028257 Engel expansion of sqrt(3).

Original entry on oeis.org

1, 2, 3, 3, 6, 17, 23, 25, 27, 73, 84, 201, 750, 24981, 46882, 119318, 121154, 242807, 276226, 3009377, 3383197, 37871208, 45930966, 261728403, 281868388, 3021299588, 3230725884, 13646315477, 30951797814, 80602040381, 1016719946612, 49448385811777
Offset: 1

Views

Author

Naoki Sato (naoki(AT)math.toronto.edu)

Keywords

Crossrefs

Cf. A006784 (for definition of Engel expansion), A220335.

Programs

  • Mathematica
    EngelExp[A_,n_]:=Join[Array[1&,Floor[A]],First@Transpose@NestList[{Ceiling[1/Expand[ #[[1]]#[[2]]-1]],Expand[ #[[1]]#[[2]]-1]}&,{Ceiling[1/(A-Floor[A])],A-Floor[A]},n-1]]; EngelExp[N[3^(1/2),7! ],50] (* Vladimir Joseph Stephan Orlovsky, Jun 08 2009 *)

Formula

For a number x (here sqrt(3)), define a(1) <= a(2) <= a(3) <= ... so that x = 1/a(1) + 1/(a(1)*a(2)) + 1/(a(1)*a(2)*a(3)) + ... by x(1) = x, a(n) = ceiling(1/x(n)), x(n+1) = x(n)*a(n) - 1.

Extensions

Better name and more terms from Simon Plouffe
More terms from Sean A. Irvine, Dec 16 2019

A054543 Engel series expansion (or "Egyptian product") for Catalan's constant G.

Original entry on oeis.org

2, 2, 2, 4, 4, 5, 5, 12, 13, 41, 110, 172, 248, 309, 3146, 5919, 21959, 22299, 30892, 401838, 1719239, 30576561, 262313756, 630913752, 3242181301, 3250783944, 13827502849, 40152067840, 137791590233, 2514510232695, 3217773878849
Offset: 1

Views

Author

Jeppe Stig Nielsen, Apr 09 2000

Keywords

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 53-59.

Crossrefs

Programs

  • Mathematica
    EngelExp[A_,n_]:=Join[Array[1&,Floor[A]],First@Transpose@NestList[{Ceiling[1/Expand[ #[[1]]#[[2]]-1]],Expand[ #[[1]]#[[2]]-1]}&,{Ceiling[1/(A-Floor[A])],A-Floor[A]},n-1]]; EngelExp[N[Catalan,7! ],50] (* Vladimir Joseph Stephan Orlovsky, Jun 08 2009 *)

A232325 Engel expansion of 1 to the base Pi.

Original entry on oeis.org

4, 12, 72, 2111, 14265, 70424, 308832, 4371476, 320218450, 1101000257, 14020589841, 102772320834, 963205851651, 5997003656523, 50649135127796, 640772902021920, 2101002284323870, 35029677728070645, 176996397541889098, 1433436623499128186
Offset: 0

Views

Author

Peter Bala, Nov 25 2013

Keywords

Comments

Let r and b be positive real numbers. We define an Engel expansion of r to the base b to be a (possibly infinite) nondecreasing sequence of positive integers [a(0), a(1), a(2), ...] such that we have the series representation r = b/a(0) + b^2/(a(0)*a(1)) + b^3/(a(0)*a(1)*a(2)) + .... Depending on the values of r and b such an expansion may not exist, and if it does exist it may not be unique.
When b = 1 we recover the ordinary Engel expansion of r. See A181565 and A230601 for some predictable Engel expansions to a base b other than 1.
In the particular case that the base b >= 1 and 0 < r < b then we can find an Engel expansion of r to the base b using the following algorithm:
Choose values for r and b.
Define the map f(x) (which depends on the base b) by f(x) = x/b*ceiling(b/x) - 1 and let f^(n)(x) denote the n-th iterate of the map f(x), with the convention that f^(0)(x) = x.
For n = 0, 1, 2, ... define the integer a(n) = ceiling(b/f^(n)(r)) until f^n(r) = 0.
When b >= 1 and 0 < r < b the sequence a(n) produced by this algorithm provides an Engel expansion of r to the base b.
For the present sequence we apply this algorithm with r := 1 and with the base b := Pi.
We can also get an alternating series representation for r in powers of b (still assuming b >= 1 and 0 < r < b), called a Pierce series expansion of r to the base b, by running the above algorithm but now with input values -r and base b. See A232326.
In addition, we can obtain two further series expansions for r in powers of b by running the algorithm with either the input values r and base -b or with the input values -r and base -b. See examples below. See A232327 and A232328 for other examples of these types of expansions.

Examples

			Truncation F_5(z) = 1 - ( z/4 + z^2/(4*12) + z^3/(4*12*72) + z^4/(4*12*72*2111) + z^5/(4*12*72*2111*14265) ). The polynomial has a positive real zero at z = 3.14159 26535 (9...), which agrees with Pi to 10 decimal places.
Comparison of generalized Engel expansions of 1 to the base Pi.
A232325: Engel series expansion of 1 to the base Pi
1 = Pi/4 + Pi^2/(4*12) + Pi^3/(4*12*72) + Pi^4/(4*12*72*2111) + ....
A232326: Pierce series expansion of 1 to the base Pi
1 = Pi/3 - Pi^2/(3*69) + Pi^3/(3*69*310) - Pi^4/(3*69*310*1017) + - ....
Running the algorithm with the input values r = 1 and base -Pi produces the expansion
1 = Pi/3 - Pi^2/(3*70) - Pi^3/(3*70*740) + Pi^4/(3*70*740*6920) + - - + ....
Running the algorithm with the input values r = -1 and base -Pi produces the expansion
1 = Pi/4 + Pi^2/(4*11) - Pi^3/(4*11*73) - Pi^4/(4*11*73*560) + + - - ....
		

Crossrefs

Programs

  • Maple
    # Define the n-th iterate of the map f(x) = x/b*ceiling(b/x) - 1
    map_iterate := proc(n,b,x) option remember;
    if n = 0 then
       x
    else
      -1 + 1/b*thisproc(n-1,b,x)*ceil(b/thisproc(n-1,b,x))
    end if
    end proc:
    # Define the terms of the expansion of x to the base b
    a := n -> ceil(evalf(b/map_iterate(n,b,x))):
    Digits:= 500:
    # Choose values for x and b
    x := 1: b:= Pi:
    seq(a(n), n = 0..19);

Formula

a(n) = ceiling(Pi/f^(n)(1)), where f^(n)(x) denotes the n-th iterate of the map f(x) = x/Pi*(ceiling(Pi/x)) - 1, with the convention that f^(0)(x) = x.
Engel series expansion of 1 to the base Pi:
1 = Pi/4 + Pi^2/(4*12) + Pi^3/(4*12*72) + Pi^4/(4*12*72*2111) + ....
The associated power series F(z) := 1 - ( z/4 + z^2/(4*12) + z^3/(4*12*72) + z^4/(4*12*72*2111) + ...) has a zero at z = Pi. Truncating the series F(z) to n terms produces a polynomial F_n(z) with rational coefficients which has a real zero close to Pi. See below for an example.

A028254 Engel expansion of sqrt(2).

Original entry on oeis.org

1, 3, 5, 5, 16, 18, 78, 102, 120, 144, 251, 363, 1402, 31169, 88630, 184655, 259252, 298770, 4196070, 38538874, 616984563, 1975413035, 5345718057, 27843871197, 54516286513, 334398528974, 445879679626, 495957494386, 2450869042061, 2629541150529, 4088114099885
Offset: 1

Views

Author

Naoki Sato (naoki(AT)math.toronto.edu)

Keywords

Comments

For a number x (here sqrt(2)), define a(1) <= a(2) <= a(3) <= ... so that x = 1/a(1) + 1/a(1)a(2) + 1/a(1)a(2)a(3) + ... by x(1) = x, a(n) = ceiling(1/x(n)), x(n+1) = x(n)a(n) - 1.

Examples

			sqrt(2) = 1.4142135623730950488...
1 + 1/3 = 4/3 = 1.3333333333333333333...; sqrt(2) - 4/3 = 0.080880229...
1 + 1/3 + 1/15 = 7/5 = 1.4; sqrt(2) - 7/5 = 0.014213562373...
1 + 1/3 + 1/15 + 1/75 = 106/75 = 1.4133333333333333...; sqrt(2) - 106/75 = 0.000880229...
		

Crossrefs

Cf. A002193 (decimal expansion), A006784 (for definition of Engel expansion), A028257 (Engel expansion of sqrt(3)).

Programs

  • Mathematica
    expandEngel[A_, n_] := Join[Array[1 &, Floor[A]], First @ Transpose @ NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]} &, {Ceiling[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; expandEngel[N[2^(1/2), 7!], 47] (* Vladimir Joseph Stephan Orlovsky, Jun 08 2009 *)

Extensions

More terms from Simon Plouffe, Jan 05 2002

A068377 Engel expansion of sinh(1).

Original entry on oeis.org

1, 6, 20, 42, 72, 110, 156, 210, 272, 342, 420, 506, 600, 702, 812, 930, 1056, 1190, 1332, 1482, 1640, 1806, 1980, 2162, 2352, 2550, 2756, 2970, 3192, 3422, 3660, 3906, 4160, 4422, 4692, 4970, 5256, 5550, 5852, 6162, 6480, 6806, 7140, 7482, 7832, 8190
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Comments

This sequence is also the Pierce expansion of sin(1). - G. C. Greubel, Nov 14 2016

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[(2 n - 2) (2 n - 1), {n, 2, 50}]] (* Bruno Berselli, Aug 04 2015 *)
    LinearRecurrence[{3,-3,1}, {1,6,20,42}, 25] (* G. C. Greubel, Oct 27 2016; a(1)=1 by Georg Fischer, Apr 02 2019*)
    Rest@ CoefficientList[Series[x (1 + 3 x + 5 x^2 - x^3)/(1 - x)^3, {x, 0, 46}], x] (* Michael De Vlieger, Oct 28 2016 *)
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[Sin[1] , 7!], 50] (* G. C. Greubel, Nov 14 2016 *)
  • PARI
    A068377(n)=(n+n--)*n*2+!n \\ M. F. Hasler, Jul 19 2015
    
  • Sage
    A068377 = lambda n: rising_factorial(n*2,2) if n>0 else 1
    print([A068377(n) for n in (0..45)]) # Peter Luschny, Aug 04 2015

Formula

a(n) = (2*n-2)*(2*n-1) = A002943(n-1) = 2*A000217(2n-2) for n>1. [Corrected and extended by M. F. Hasler, Jul 19 2015]
From Colin Barker, Apr 13 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>4.
G.f.: x*(1 + 3*x + 5*x^2 - x^3)/(1-x)^3. (End)
E.g.f.: -2 + x + 2*(1 - x + 2*x^2)*exp(x). - G. C. Greubel, Oct 27 2016
From Amiram Eldar, May 05 2025: (Start)
Sum_{n>=1} 1/a(n) = 2 - log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2 - Pi/4 - log(2)/2. (End)

A195601 Engel expansion of beta = 3/(2*log(alpha/2)); alpha = A195596.

Original entry on oeis.org

1, 2, 2, 2, 2, 5, 5, 5, 20, 36, 78, 842, 5291, 10373, 17340, 28619, 35586, 93572, 98045, 2470364, 13603654, 14328528, 16490766, 833971648, 1788088151, 9592330101, 10952282168, 40005288076, 54302548920, 118523737357, 776601533408, 1241894797770, 24485470725324
Offset: 1

Views

Author

Alois P. Heinz, Sep 21 2011

Keywords

Comments

beta = 1.95302570335815413945406288542575380414251340201036319609354... is used to measure the expected height of random binary search trees.
Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbrüchen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmänner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A195599 (decimal expansion), A195600 (continued fraction), A195581, A195582, A195583, A195596, A195597, A195598.

Programs

  • Maple
    alpha:= solve(alpha*log((2*exp(1))/alpha)=1, alpha):
    beta:= 3/(2*log(alpha/2)):
    engel:= (r, n)-> `if`(n=0 or r=0, NULL, [ceil(1/r), engel(r*ceil(1/r)-1, n-1)][]):
    Digits:=400: engel(evalf(beta), 39);
  • Mathematica
    f:= N[-1/ProductLog[-1/(2*E)], 500001]; EngelExp[A_, n_]:= Join[Array[1 &, Floor[A]], First@Transpose@NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]} &, {Ceiling[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; EngelExp[N[3/(2*Log[f/2]), 500000], 25] (* G. C. Greubel, Oct 21 2016 *)

Formula

beta = 3/(2*log(alpha/2)) = 3*alpha/(2*alpha-2), where alpha = A195596 = -1/W(-exp(-1)/2) and W is the Lambert W function.
A195582(n)/A195583(n) = alpha*log(n) - beta*log(log(n)) + O(1).

A195598 Engel expansion of alpha, the unique solution on [2,oo) of the equation alpha*log((2*e)/alpha)=1.

Original entry on oeis.org

1, 1, 1, 1, 4, 5, 5, 10, 15, 18, 102, 114, 246, 394, 1051, 3044, 50263, 111686, 128162, 273256, 583069, 927699, 7299350, 10833746, 15187876, 67314562, 2141820499, 4969978969, 10131201410, 49316153957, 221808008142, 275241196373, 1466049587038, 3406190692970
Offset: 1

Views

Author

Alois P. Heinz, Sep 21 2011

Keywords

Comments

alpha = 4.31107040700100503504707609644689027839156299804028805066937... is used to measure the expected height of random binary search trees.
Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbrüchen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmänner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A195596 (decimal expansion), A195597 (continued fraction), A195581, A195582, A195583, A195599, A195600, A195601.

Programs

  • Maple
    alpha:= solve(alpha*log((2*exp(1))/alpha)=1, alpha):
    engel:= (r, n)-> `if`(n=0 or r=0, NULL, [ceil(1/r), engel(r*ceil(1/r)-1, n-1)][]):
    Digits:=400: engel(evalf(alpha), 39);

Formula

alpha = -1/W(-exp(-1)/2), where W is the Lambert W function.
A195582(n)/A195583(n) = alpha*log(n) - beta*log(log(n)) + O(1), with beta = 1.953... (A195599).

A220393 A modified Engel expansion of Pi.

Original entry on oeis.org

1, 1, 1, 8, 14, 2, 2, 3, 4, 5, 96, 115, 8, 2, 2, 2, 81, 160, 2, 6, 355, 140, 4, 12, 6, 2, 2, 3, 4, 3, 46, 66, 4, 2, 9, 16, 3, 4, 3, 4, 2, 2, 4, 9, 4, 2, 4, 33, 20, 2, 3, 4, 2, 2
Offset: 1

Views

Author

Peter Bala, Dec 13 2012

Keywords

Comments

The Engel expansion of a positive real number x is the unique nondecreasing sequence {e(1), e(2), e(3), ...} of positive integers such that x = 1/e(1) + 1/(e(1)*e(2)) + 1/(e(1)*e(2)*e(3)) + .... The terms in the Engel expansion of x are obtained from the iterates of the mapping g(x) := x*(1 + floor(1/x)) - 1 by means of the formula e(n) = 1 + floor(1/g^(n)(x)).
Let h(x) = floor(1/x)*g(x). This is called the harmonic sawtooth map by Crowley. Then the modified Engel expansion of a real number 0 < x <= 1 is a sequence {a(1), a(2), a(3), ...} of positive integers such that x = 1/a(1) + 1/(a(1)*a(2)) + 1/(a(1)*a(2)*a(3)) + ... whose terms are obtained from the iterates of the harmonic sawtooth map h(x) by the formulas a(1) = 1 + floor(1/x) and, for n >= 2, a(n) = floor(1/h^(n-2)(x))*{1 + floor(1/h^(n-1)(x))}. Here h^(n)(x) = h(h^(n-1)(x)) denotes the n-th iterate of the map h(x), with the convention that h^(0)(x) = x. For further details see the Bala link.
When the real number x > 1 with, say, floor(x) = m, the modified Engel expansion of x is found by first calculating the modified Engel expansion of x - m and then prepending a sequence of m 1's to this.

Crossrefs

Formula

Let x = Pi - 3. Then a(1) = a(2) = a(3) = 1, a(4) = ceiling(1/x) and, for n >= 1, a(n+4) = floor(1/h^(n-1)(x))*ceiling(1/h^(n)(x)).
Put P(n) = Product_{k = 1..n} a(k). Then we have the Egyptian fraction series expansion Pi = Sum_{n>=1} 1/P(n) = 1/1 + 1/1 + 1/1 + 1/8 + 1/(8*14) + 1/(8*14*2) + 1/(8*14*2*2) + .... For n >= 4, the error made in truncating this series to n terms is less than the n-th term.

A228929 Optimal ascending continued fraction expansion of Pi - 3.

Original entry on oeis.org

7, -113, 4739, -46804, 134370, -614063, 1669512, -15474114, -86232481, 1080357006, -8574121305, -24144614592, 133884333083, -2239330253016, -6347915250018, 14541933941298, -42301908155404, -298013673554972, 5177473084279656, -46709468571434452, 1201667304102142095, -68508286025632748778, 850084640720511629243, -2458418086834560217354
Offset: 1

Views

Author

Giovanni Artico, Sep 08 2013

Keywords

Comments

Definition of the expansion: for a positive real number x, there is always a unique sequence of signed integers with increasing absolute value |a(i)|>|a(i-1)| such that x =floor(x)+ 1/a(1) + 1/a(1)/a(2) + 1/a(1)/a(2)/a(3) + 1/a(1)/a(2)/a(3)/a(4) ... or equivalently x=floor(x)+1/a(1)*(1+1/a(2)*(1+1/a(3)*(1+1/a(4)*(1+...)))) giving the fastest converging series with this representation. This formula can be represented as a regular ascending continued fraction. The expansion is similar to Engel and Pierce expansions, but the sign of the terms is not predefined and determined by the algorithm for optimizing the convergence.
For x rational number the expansion has a finite number of terms, for x irrational an infinite number. Empirically the sequence doesn't show any evident regularity except in some interesting cases.

Examples

			Pi = 3 + 1/7*(1 - 1/113*(1 + 1/4739*(1 - 1/46804*(1 + 1/134370*(1 - 1/614063*(1 + 1/1669512*(1 + ...))))))).
		

Crossrefs

Programs

  • Derive
    ArticoExp(x, n) := VECTOR(ROUND(1, ABS(k))*SIGN(k), k, ITERATES(ROUND(1, ABS(u))*ABS(u) - 1, u, MOD(x), n))
    Precision:=Mixed
    PrecisionDigits:=10000
    ArticoExp(PI,20)
  • Maple
    # Slow procedure valid for every number
    ArticoExp := proc (n, q::posint)::list; local L, i, z; Digits := 50000; L := []; z := n-floor(n); for i to q+1 do if z = 0 then break end if; L := [op(L), round(1/abs(z))*sign(evalf(z))]; z := abs(z)*round(1/abs(z))-1 end do; return L end proc
    # Fast procedure, not suited for rational numbers
    ArticoExp := proc (n, q::posint)::list; local L, i, z; Digits := 50000; L := []; z := frac(evalf(n)); for i to q+1 do if z = 0 then break end if; L := [op(L), round(1/abs(z))*sign(z)]; z := abs(z)*round(1/abs(z))-1 end do; return L end proc
    # List the first 20 terms of the expansion of Pi
    ArticoExp(Pi,20)
  • Mathematica
    ArticoExp[x_, n_] :=  Round[1/#] & /@ NestList[Round[1/Abs[#]]*Abs[#] - 1 &, FractionalPart[x], n]; Block[{$MaxExtraPrecision = 50000}, ArticoExp[Pi, 20]]

Formula

Given a positive real number x, let z(0)=x-floor(x) and z(k+1)=abs(z(k))*round(1/abs(z(k)))-1 ; then a(n)=sign(z(n))*round(1/abs(z(n))) for n>0.

A028259 Engel expansion of the golden ratio, (1 + sqrt(5))/2 = 1.61803... .

Original entry on oeis.org

1, 2, 5, 6, 13, 16, 16, 38, 48, 58, 104, 177, 263, 332, 389, 4102, 4575, 5081, 9962, 18316, 86613, 233239, 342534, 964372, 1452850, 7037119, 7339713, 8270361, 12855437, 15900982, 19211148, 1365302354, 1565752087, 1731612283
Offset: 1

Views

Author

Naoki Sato (naoki(AT)math.toronto.edu), Dec 11 1999

Keywords

Comments

Cf. A006784 for definition of Engel expansion.
(sqrt(5) - 1)/2 = 1/(golden ratio) has the same Engel expansion starting with a(2). - G. C. Greubel, Oct 16 2016
Each Engel expansion for a constant x (x > 0) starts with floor(x) 1's. After that, the mean growth of the terms is by a factor e for most constants x, i.e., the order of magnitude of the n-th entry is exp(n-floor(c)), for n large enough. This comment is similar to the fact that for the continued fraction terms of most constants, the geometric mean of those terms equals the Khintchine constant for n large enough. Moreover, note that for the golden section, all continued fraction terms are 1 and thus do not obey the Gauss-Kuzmin distribution which leads to the Khintchine constant (i.e., the Khintchine measure for the golden ratio is 1), but the Engel expansion does obey the statistic behavior for most constants. - A.H.M. Smeets, Aug 24 2018

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Programs

  • Mathematica
    EngelExp[ A_, n_ ] := Join[ Array[ 1&, Floor[ A ] ], First@Transpose@NestList[ {Ceiling[ 1/Expand[ #[ [ 1 ] ]#[ [ 2 ] ]-1 ] ], Expand[ #[ [ 1 ] ]#[ [ 2 ] ]-1 ]}&, {Ceiling[ 1/(A-Floor[ A ]) ], A-Floor[ A ]}, n-1 ] ]
  • Python
    j = 0
    while j<3100000:
    # to obtain n correct Engel expansion terms about n^2/2 continued fraction steps are needed; 3100000 is a safe bound
        if j == 0:
            p0, q0 = 1, 1
        elif j == 1:
            p1, q1 = p0+1, 1
        else:
            p0, p1 = p1, p1+p0
            q0, q1 = q1, q1+q0
        j = j+1
    i = 0
    while i < 2410:
        i = i+1
        a = q0//p0+1
        print(i, a)
        p0 = a*p0-q0
    # A.H.M. Smeets, Aug 24 2018

Formula

Limit_{n -> oo} log(a(n + floor(golden ratio)))/n = 1.

Extensions

Corrected and extended by Vladeta Jovovic, Aug 16 2001
Previous Showing 11-20 of 108 results. Next