cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 77 results. Next

A118851 Product of parts in n-th partition in Abramowitz and Stegun order.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 4, 3, 4, 2, 1, 5, 4, 6, 3, 4, 2, 1, 6, 5, 8, 9, 4, 6, 8, 3, 4, 2, 1, 7, 6, 10, 12, 5, 8, 9, 12, 4, 6, 8, 3, 4, 2, 1, 8, 7, 12, 15, 16, 6, 10, 12, 16, 18, 5, 8, 9, 12, 16, 4, 6, 8, 3, 4, 2, 1, 9, 8, 14, 18, 20, 7, 12, 15, 16, 20, 24, 27, 6, 10, 12, 16, 18, 24, 5, 8, 9, 12, 16, 4
Offset: 0

Views

Author

Alford Arnold, May 01 2006

Keywords

Comments

Let Theta(n) denote the set of norm values corresponding to all the partitions of n. The following results hold regarding this set: (i) Theta(n) is a subset of Theta(n+1); (ii) A prime p will appear as a norm only for partitions of n>=p; (iii) There exists a prime p not in Theta(n) for all n>=6; (iv) Let h(k) be the prime floor function which gives the greatest prime less than or equal to the k, then the prime p=h(n+1) does not belong to Theta(n); and (v) The primes not in the set Theta(n) are A000720(A000792(n)) - A000720(n). - Abhimanyu Kumar, Nov 25 2020

Examples

			a(9) = 4 because the 9th partition is [2,2] and 2*2 = 4.
Table T(n,k) starts:
  1;
  1;
  2, 1;
  3, 2,  1;
  4, 3,  4,  2,  1;
  5, 4,  6,  3,  4, 2,  1;
  6, 5,  8,  9,  4, 6,  8,  3,  4,  2, 1;
  7, 6, 10, 12,  5, 8,  9, 12,  4,  6, 8, 3, 4,  2,  1;
  8, 7, 12, 15, 16, 6, 10, 12, 16, 18, 5, 8, 9, 12, 16, 4, 6, 8, 3, 4, 2, 1;
		

References

  • Abramowitz and Stegun, Handbook (1964) page 831.

Crossrefs

Cf. A000041 (row lengths), A006906 (row sums).

Programs

  • PARI
    C(sig)={vecprod(sig)}
    Row(n)={apply(C, [Vecrev(p) | p<-partitions(n)])}
    { for(n=0, 7, print(Row(n))) } \\ Andrew Howroyd, Oct 19 2020

Formula

a(n) = A085643(n)/A048996(n).
T(n,k) = A005361(A036035(n,k)). - Andrew Howroyd, Oct 19 2020

Extensions

Corrected and extended by Franklin T. Adams-Watters, May 26 2006

A162506 Convergent of an infinite product, a*b*c,...; a = [1,1,1,...], b = [1,0,2,0,2,0,2,...], c = [1,0,0,3,0,0,3,0,0,3,...],...

Original entry on oeis.org

1, 1, 3, 6, 12, 23, 42, 77, 132, 236, 390, 664, 1087, 1782, 2858, 4601, 7216, 11344, 17650, 27162, 41632, 63316, 95717, 143558, 214644, 318464, 470879, 691968, 1012866, 1474434, 2140606, 3088874, 4445440, 6370142, 9095564, 12941289, 18350398, 25930984
Offset: 1

Views

Author

Gary W. Adamson, Jul 04 2009

Keywords

Comments

Equals row sums of triangle A162507.
With offset 0, sum of products of parts, counted without multiplicity, in all partitions of n. Sum of products of parts, counted with multiplicity, in all partitions of n is A006906. - Vladeta Jovovic, Jul 24 2009

Examples

			First few rows of the array =
1,...1,...1,...1,...1,...
1,...1,...3,...3,...5,...
1,...1,...3,...6,...8,...
1,...1,...3,...6,..12,...
1,...1,...3,...6,..12,...
...tending to A162506: (1, 1, 3, 6, 12, 23, 42, 77, 132,...)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1) +add(b(n-i*j, i-1)*i, j=1..n/i)))
        end:
    a:= n-> b(n-1, n-1):
    seq(a(n), n=1..50);  # Alois P. Heinz, Feb 26 2013
  • Mathematica
    nmax = 50; Rest[CoefficientList[Series[x*Product[1+k*x^k/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jan 08 2016 *)

Formula

Convergent of an infinite product, a*b*c,...; a = [1,1,1,...], b =
[1,0,2,0,2,0,2,...], c = [1,0,0,3,0,0,3,0,0,3,...]; i.e. the infinite set of
sequences [1,...N,...,] interleaved with (N-2) adjacent zeros.
G.f.: x*Product(1+k*x^k/(1-x^k),k=1..infinity). - Vladeta Jovovic, Jul 24 2009

Extensions

More terms from Vladeta Jovovic, Jul 22 2009

A265837 Expansion of Product_{k>=1} 1/(1 - k^3*x^k).

Original entry on oeis.org

1, 1, 9, 36, 164, 505, 2474, 7273, 31008, 103644, 379890, 1226802, 4747529, 14553648, 52167558, 171639695, 583371802, 1851395692, 6427705062, 19983302144, 67235043192, 214615427776, 697704303005, 2194982897304, 7262755260410, 22402942281766, 72461661415093
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 16 2015

Keywords

Crossrefs

Column k=3 of A292193.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1 - k^3*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 3^n, where
c = 86.60286320343345379122228784466307940393110978... if n mod 3 = 0
c = 86.27536745612304663727011387030370600864018892... if n mod 3 = 1
c = 86.29819842537784019895326532818285333403267092... if n mod 3 = 2.
G.f.: exp(Sum_{k>=1} Sum_{j>=1} j^(3*k)*x^(j*k)/k). - Ilya Gutkovskiy, Jun 14 2018

A285241 Expansion of Product_{k>=1} 1/(1 - k*x^k)^(k^2).

Original entry on oeis.org

1, 1, 9, 36, 140, 481, 1774, 5925, 20076, 64980, 208486, 652058, 2017023, 6117878, 18347256, 54222195, 158463794, 457570786, 1307951914, 3700153918, 10371860026, 28810051738, 79359812567, 216834266612, 587961817595, 1582612248239, 4230325722508
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 15 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1-k*x^k)^(k^2), {k,1,nmax}], {x,0,nmax}], x]

Formula

a(n) ~ c * n^8 * 3^(n/3), where
if mod(n,3) = 0 then c = 3435237242728465092737309192093188152686332293\
03276380306112638865540880372901642880694943679256417087889777743957063\
209444405157397505005623042846150296486667845382334521513094023.8560142\
40331306860864399770618296475558098172993864629247911801570500913143642\
65158886200452165335605783203726486071335...
if mod(n,3) = 1 then c = 3435237242728465092737309192093188152686332293\
03276380306112638865540880372901642880694943679256417087889777743957063\
209444405157397505005623042846150296486667845382334521513094023.8560112\
77299895134841028015999951571187798033179513268954711586617617334007687\
07198348808962592621276659532114355538024...
if mod(n,3) = 2 then c = 3435237242728465092737309192093188152686332293\
03276380306112638865540880372901642880694943679256417087889777743957063\
209444405157397505005623042846150296486667845382334521513094023.8560117\
00278534968233203470801053870003971422069097966617636511346003845666735\
79293861331368526745743422198017148868212...
In closed form, a(n) ~ -(27*Product_{k>=4}((1 - k / 3^(k/3))^(-k^2)) / (13 + 128*3^(1/3) - 95*3^(2/3)) + 243*Product_{k>=4}((1 + (-1)^(1 + 2*k/3) * k / 3^(k/3))^(-k^2)) / ((-1)^(2*n/3) * ((3 + 2*(-3)^(1/3))^4 * (-3 + (-3)^(2/3)))) + (-1)^(1 - 4*n/3) * Product_{k>=4}((1 + (-1)^(1 + 4*k/3) * k / 3^(k/3))^(-k^2)) / ((1 + (-1/3)^(1/3)) * (1 - 2*(-1/3)^(2/3))^4)) / 793618560 * n^8 * 3^(n/3).

A300277 G.f.: 1 + Sum_{n>=1} a(n)*x^n/(1 - x^n) = Product_{n>=1} 1/(1 - n*x^n).

Original entry on oeis.org

1, 2, 5, 11, 24, 48, 96, 184, 348, 645, 1169, 2140, 3761, 6687, 11645, 20326, 34635, 59854, 100579, 171211, 285718, 479325, 791315, 1318955, 2156805, 3553589, 5783306, 9445861, 15250215, 24759156, 39713787, 63991400, 102197851, 163548416, 259744930, 413761633, 653715967
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 01 2018

Keywords

Comments

Moebius transform of A006906.

Crossrefs

Programs

  • Mathematica
    nn = 37; f[x_] := 1 + Sum[a[n] x^n/(1 - x^n), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - Product[1/(1 - n x^n), {n, 1, nn}], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
    s[n_] := SeriesCoefficient[Product[1/(1 - k x^k), {k, 1, n}], {x, 0, n}]; a[n_] := Sum[MoebiusMu[n/d] s[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 37}]

Formula

a(n) = Sum_{d|n} mu(n/d)*A006906(d).

A306901 Sum over all partitions of n of the bitwise AND of the parts.

Original entry on oeis.org

0, 1, 3, 4, 8, 9, 14, 13, 24, 28, 36, 38, 55, 54, 68, 75, 106, 120, 154, 168, 208, 228, 269, 298, 374, 404, 475, 530, 618, 682, 808, 896, 1080, 1220, 1410, 1581, 1828, 2022, 2322, 2598, 2963, 3278, 3732, 4128, 4684, 5218, 5888, 6550, 7418, 8192, 9198, 10187
Offset: 0

Views

Author

Alois P. Heinz, Mar 15 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, r) option remember; `if`(i<1, 0, (t->
          `if`(i b(n$2, 2^ilog2(2*n)-1):
    seq(a(n), n=0..55);

A306902 Sum over all partitions of n of the bitwise OR of the parts.

Original entry on oeis.org

0, 1, 3, 7, 13, 23, 40, 67, 103, 156, 231, 340, 486, 689, 964, 1352, 1845, 2507, 3363, 4500, 5937, 7814, 10174, 13247, 17064, 21930, 27957, 35616, 45009, 56805, 71252, 89320, 111282, 138479, 171421, 212021, 260974, 320837, 392753, 480395, 585239, 712163, 863536
Offset: 0

Views

Author

Alois P. Heinz, Mar 15 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, r) option remember; `if`(i<1, 0, (t->
          `if`(i b(n$2, 0):
    seq(a(n), n=0..45);

A306903 Sum over all partitions of n of the bitwise XOR of the parts.

Original entry on oeis.org

0, 1, 2, 7, 8, 19, 26, 61, 70, 126, 146, 270, 308, 519, 604, 1054, 1222, 1929, 2208, 3454, 3930, 5862, 6576, 9833, 11102, 16052, 17904, 25752, 28764, 40479, 44830, 62988, 70188, 97151, 107662, 148141, 164710, 223783, 247380, 334035, 370406, 495313, 547000
Offset: 0

Views

Author

Alois P. Heinz, Mar 15 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, r) option remember; `if`(i<1, 0, (t->
          `if`(i b(n$2, 0):
    seq(a(n), n=0..45);

Formula

a(n) is odd <=> n in { A067567 }.

A318415 Expansion of Product_{i>=1, j>=1} 1/(1 - i*j*x^(i*j)).

Original entry on oeis.org

1, 1, 5, 11, 35, 69, 200, 398, 1014, 2069, 4820, 9716, 21787, 43209, 92530, 182773, 378676, 737526, 1492451, 2872788, 5686194, 10837935, 21052463, 39699970, 75972300, 141818166, 267607065, 495142606, 922920753, 1692529453, 3121105278, 5676677651, 10364752129, 18708292447, 33851433117, 60656841965
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 26 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 35; CoefficientList[Series[Product[Product[1/(1 - i j x^(i j)), {i, 1, nmax}], {j, 1, nmax}], {x, 0, nmax}], x]
    nmax = 35; CoefficientList[Series[Product[1/(1 - k x^k)^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 35; CoefficientList[Series[Exp[Sum[Sum[d^(k/d + 1) DivisorSigma[0, d], {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^(k/d + 1) DivisorSigma[0, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 35}]
    nmax = 40; s = 1 - x; Do[s *= Sum[Binomial[DivisorSigma[0, k], j]*(-1)^j*k^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2018 *)

Formula

G.f.: Product_{k>=1} 1/(1 - k*x^k)^tau(k), where tau = number of divisors (A000005).
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} d^(k/d+1)*tau(d) ) * x^k/k).
From Vaclav Kotesovec, Aug 27 2018: (Start)
a(n) ~ c * n * 3^(n/3), where
c = 10751825728554.298582954430359167227238488440778317... if mod(n,3)=0
c = 10751825728553.835664124121831524829543267756895348... if mod(n,3)=1
c = 10751825728553.838520991588115910603754564083195806... if mod(n,3)=2
In closed form, c = (Product_{k>=4}((1 - k/3^(k/3))^(-sigma(0,k)))) / (21 - 16*3^(1/3) + 3^(2/3)) - (3*Product_{k>=4}((1 + ((-1)^(1 + 2*k/3)*k)/3^(k/3))^(-sigma(0,k)))) / ((-1)^(2*n/3)*((3 + 2*(-3)^(1/3))^2*(-3 + (-3)^(2/3)))) + Product_{k>=4}((1 + ((-1)^(1 + 4*k/3)*k)/3^(k/3))^(-sigma(0,k))) / (9*(-1)^(4*n/3)*((1 + (-1/3)^(1/3))*(1 - 2*(-1/3)^(2/3))^2))
(End)

A336975 Expansion of Product_{k>=1} 1/(1 - x^k * (k + x)).

Original entry on oeis.org

1, 1, 4, 9, 22, 47, 107, 221, 468, 953, 1932, 3814, 7560, 14625, 28192, 53757, 101827, 190907, 356362, 659716, 1215314, 2224968, 4053914, 7346367, 13260001, 23822114, 42629786, 75991017, 134991954, 238948942, 421656911, 741750026, 1301116634, 2275985891, 3971022904
Offset: 0

Views

Author

Seiichi Manyama, Aug 09 2020

Keywords

Crossrefs

Programs

  • Mathematica
    m = 34; CoefficientList[Series[Product[1/(1 - x^k*(k + x)), {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, May 01 2021 *)
  • PARI
    N=66; x='x+O('x^N); Vec(1/prod(k=1, N, 1-x^k*(k+x)))
    
  • PARI
    N=66; x='x+O('x^N); Vec(exp(sum(k=1, N, x^k*sumdiv(k, d, (k/d+x)^d/d))))

Formula

G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} (k/d + x)^d / d).
a(n) ~ c * n * phi^(n+1) / 5, where c = Product_{k>=3} 1/(1 - 1/phi^k*(k + 1/phi)) = 167.5661037860673786430316975350024960626825333609486463342... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, May 06 2021
Previous Showing 21-30 of 77 results. Next