cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 233 results. Next

A014192 Palindromes in base 4 (written in base 10).

Original entry on oeis.org

0, 1, 2, 3, 5, 10, 15, 17, 21, 25, 29, 34, 38, 42, 46, 51, 55, 59, 63, 65, 85, 105, 125, 130, 150, 170, 190, 195, 215, 235, 255, 257, 273, 289, 305, 325, 341, 357, 373, 393, 409, 425, 441, 461, 477, 493, 509, 514, 530, 546, 562, 582, 598, 614, 630, 650, 666
Offset: 1

Views

Author

Keywords

Comments

Rajasekaran, Shallit, & Smith prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 03 2020

Crossrefs

Palindromes in bases 2 through 10: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113.

Programs

  • Magma
    [n: n in [0..800] | Intseq(n, 4) eq Reverse(Intseq(n, 4))]; // Vincenzo Librandi, Sep 09 2015
    
  • Mathematica
    f[n_,b_] := Module[{i=IntegerDigits[n,b]}, i==Reverse[i]]; lst={}; Do[If[f[n,4], AppendTo[lst,n]], {n,1000}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
    pal4Q[n_]:=Module[{c=IntegerDigits[n,4]},c==Reverse[c]]; Select[Range[ 0,700],pal4Q] (* Harvey P. Dale, Jul 21 2020 *)
  • PARI
    ispal(n,b=4)=my(d=digits(n,b)); d==Vecrev(d) \\ Charles R Greathouse IV, May 03 2020
    
  • Python
    from gmpy2 import digits
    def A014192(n):
        if n == 1: return 0
        y = (x:=1<<(n.bit_length()-2&-2))<<2
        return (c:=n-x)*x+int(digits(c,4)[-2::-1]or'0',4) if nChai Wah Wu, Jun 14 2024

Formula

Sum_{n>=2} 1/a(n) = 2.7857715... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020

Extensions

More terms from Patrick De Geest

A057148 Palindromes only using 0 and 1 (i.e., base-2 palindromes).

Original entry on oeis.org

0, 1, 11, 101, 111, 1001, 1111, 10001, 10101, 11011, 11111, 100001, 101101, 110011, 111111, 1000001, 1001001, 1010101, 1011101, 1100011, 1101011, 1110111, 1111111, 10000001, 10011001, 10100101, 10111101, 11000011, 11011011, 11100111, 11111111, 100000001
Offset: 1

Views

Author

Henry Bottomley, Aug 14 2000

Keywords

Comments

For each term having fewer than 10 digits, the square will also be a palindrome. - Dmitry Kamenetsky, Oct 21 2008

Crossrefs

Cf. A006995 for sequence translated from binary to decimal. A016116 for number of terms of sequence with n+1 binary digits (0 taken to have no digits).

Programs

  • Mathematica
    (* get NextPalindrome from A029965 *)
    Select[ NestList[ NextPalindrome, 0, 11110], Max(AT) IntegerDigits(AT)# < 2 &] (* Robert G. Wilson v *)
    Select[FromDigits/@Tuples[{0,1},8],IntegerDigits[#]==Reverse[ IntegerDigits[ #]]&] (* Harvey P. Dale, Apr 20 2015 *)
  • Python
    from itertools import count, islice, product
    def agen(): # generator of terms
        yield from [0, 1]
        for d in count(2):
            for rest in product("01", repeat=d//2-1):
                left = "1" + "".join(rest)
                for mid in [[""], ["0", "1"]][d%2]:
                    yield int(left + mid + left[::-1])
    print(list(islice(agen(), 32))) # Michael S. Branicky, Mar 29 2022
    
  • Python
    def A057148(n):
        if n == 1: return 0
        a = 1<Chai Wah Wu, Jun 10 2024
  • Sage
    [int(n.binary()) for n in (0..220) if Word(n.digits(2)).is_palindrome()] # Peter Luschny, Sep 13 2018
    

A060792 Numbers that are palindromic in bases 2 and 3.

Original entry on oeis.org

0, 1, 6643, 1422773, 5415589, 90396755477, 381920985378904469, 1922624336133018996235, 2004595370006815987563563, 8022581057533823761829436662099, 392629621582222667733213907054116073, 32456836304775204439912231201966254787, 428027336071597254024922793107218595973
Offset: 1

Views

Author

Ulrich Schimke (ulrschimke(AT)aol.com)

Keywords

Comments

a(18) (if it exists) is greater than 3^93. - Ilya Nikulshin, Feb 22 2016

Examples

			6643 is a term: since 6643 = 1100111110011_2 = 100010001_3.
1422773 is a term: 1422773 = 101011011010110110101_2 = 2200021200022_3. - _Vladimir Joseph Stephan Orlovsky_, Sep 19 2009
		

Crossrefs

a(3) = A048268(2) = A056749(3).
Intersection of A006995 and A014190.

Programs

  • Magma
    [n: n in [0..2*10^7] | Intseq(n, 3) eq Reverse(Intseq(n, 3))and Intseq(n, 2) eq Reverse(Intseq(n, 2))]; // Vincenzo Librandi, Feb 24 2016
  • Mathematica
    pal2Q[n_Integer] := IntegerDigits[n, 2] == Reverse[IntegerDigits[n, 2]]; pal3Q[n_Integer] := IntegerDigits[n, 3] == Reverse[IntegerDigits[n, 3]]; A060792 = {}; Do[If[pal2Q[n] && pal3Q[n], AppendTo[A060792, n]], {n, 12!}]; A060792 (* Vladimir Joseph Stephan Orlovsky, Sep 19 2009 *)
    b1=2; b2=3; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 2 10^7}]; lst (* Vincenzo Librandi, Feb 24 2016 *)
  • PARI
    ispal(n,b)=my(d=digits(n,b)); d==Vecrev(d)
    is(n)=ispal(n,2)&&ispal(n,3) \\ Charles R Greathouse IV, Jun 17 2014
    
  • Python
    from itertools import chain
    from gmpy2 import digits, mpz
    A060792 = [int(n,2) for n in chain(map(lambda x:bin(x)[2:]+bin(x)[2:][::-1],range(1,2**16)),map(lambda x:bin(x)[2:]+bin(x)[2:][-2::-1], range(1,2**16))) if mpz(int(n,2)).digits(3) == mpz(int(n,2)).digits(3)[::-1]] # Chai Wah Wu, Aug 12 2014
    

Extensions

a(7) found by François Boisson, using a Caml program running on an AMD-64 machine. - Bruno Petazzoni, program co-author, Jan 31 2006
a(8) from the same source, May 26 2006
a(9) from Alan Grimes, Dec 16 2013
a(10) from Keith F. Lynch, Jan 07 2014
Term 0 prepended by Robert G. Wilson v, Oct 08 2014
a(11)-a(15) (from Alan Grimes and Keith F. Lynch) added by Japheth Lim, Jan 30 2014

A094202 Integers k whose Zeckendorf representation A014417(k) is palindromic.

Original entry on oeis.org

0, 1, 4, 6, 9, 12, 14, 22, 27, 33, 35, 51, 56, 64, 74, 80, 88, 90, 116, 127, 145, 158, 174, 184, 197, 203, 216, 232, 234, 276, 294, 326, 368, 378, 399, 425, 441, 462, 472, 493, 519, 525, 546, 572, 588, 609, 611, 679, 708, 760, 828, 847, 915, 944, 988, 1022, 1064, 1090
Offset: 1

Views

Author

Ron Knott, May 25 2004

Keywords

Examples

			Fibonacci base columns are ...,8,5,3,2,1 with column entries 0 or 1 and no two consecutive ones (the Zeckendorf representation) so that each n has a unique representation.
12 is in the sequence because 12 = 8 + 3 + 1 = 10101 base Fib; 14 = 13 + 1 = 100001 base Fib.
		

References

  • C. G. Lekkerkerker, Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci, Simon Stevin vol. 29, 1952, pages 190-195.
  • E. Zeckendorf, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bulletin de la Société Royale des Sciences de Liège vol. 41 (1972) pages 179-182.

Crossrefs

Gives the positions of zeros in A095734. Subsets: A095730, A048757. A006995 gives the integers whose binary expansion is palindromic.

Programs

  • Mathematica
    zeck[n_Integer] := Block[{k = Ceiling[ Log[ GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[ fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k-- ]; FromDigits[fr]]; a = {}; Do[z = zeck[n]; If[ FromDigits[ Reverse[ IntegerDigits[z]]] == z, AppendTo[a, n]], {n, 1123}]; a (* Robert G. Wilson v, May 29 2004 *)
    mirror[dig_, s_] := Join[dig, s, Reverse[dig]]; select[v_, mid_] := Select[v, Length[#] == 0 || Last[#] != mid &]; fib[dig_] := Plus @@ (dig * Fibonacci[Range[2, Length[dig] + 1]]); pals = Rest[IntegerDigits /@ FromDigits /@ Select[Tuples[{0, 1}, 7], SequenceCount[#, {1, 1}] == 0 &]]; Union@Join[{0, 1}, fib /@ Join[mirror[#, {}] & /@ (select[pals, 1]), mirror[#, {1}] & /@ (select[pals, 1]), mirror[#, {0}] & /@ pals]] (* Amiram Eldar, Jan 11 2020 *)
  • Python
    from sympy import fibonacci
    def a(n):
        k=0
        x=0
        while n>0:
            k=0
            while fibonacci(k)<=n: k+=1
            x+=10**(k - 3)
            n-=fibonacci(k - 1)
        return x
    def ok(n):
        x=str(a(n))
        return x==x[::-1]
    print([n for n in range(1101) if ok(n)]) # Indranil Ghosh, Jun 07 2017

Extensions

More terms from Robert G. Wilson v, May 28 2004
Offset changed to 1 by Alois P. Heinz, Aug 02 2017

A029952 Palindromic in base 5.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 12, 18, 24, 26, 31, 36, 41, 46, 52, 57, 62, 67, 72, 78, 83, 88, 93, 98, 104, 109, 114, 119, 124, 126, 156, 186, 216, 246, 252, 282, 312, 342, 372, 378, 408, 438, 468, 498, 504, 534, 564, 594, 624, 626, 651, 676, 701, 726, 756, 781, 806, 831
Offset: 1

Views

Author

Keywords

Comments

Cilleruelo, Luca, & Baxter prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 03 2020

Crossrefs

Palindromes in bases 2 through 10: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113.

Programs

  • Magma
    [n: n in [0..900] | Intseq(n, 5) eq Reverse(Intseq(n, 5))]; // Vincenzo Librandi, Sep 09 2015
    
  • Maple
    # test for palindrome in base b, from N. J. A. Sloane, Sep 13 2015
    b:=5;
    ispal := proc(n) global b; local t1,t2,i;
    if n <= b-1 then return(1); fi;
    t1:=convert(n,base,b); t2:=nops(t1);
    for i from 1 to floor(t2/2) do
    if t1[i] <> t1[t2+1-1] then return(-1); fi;
    od: return(1); end;
    lis:=[]; for n from 0 to 100 do if ispal(n) = 1 then lis:=[op(lis),n]; fi; od: lis;
  • Mathematica
    f[n_,b_] := Module[{i=IntegerDigits[n,b]}, i==Reverse[i]]; lst={}; Do[If[f[n,5], AppendTo[lst,n]], {n,1000}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
    Select[Range[0,1000],IntegerDigits[#,5]==Reverse[IntegerDigits[#,5]]&] (* Harvey P. Dale, Oct 24 2020 *)
  • PARI
    ispal(n,b=5)=my(d=digits(n,b)); d==Vecrev(d) \\ Charles R Greathouse IV, May 03 2020
    
  • Python
    from gmpy2 import digits
    def A029952(n):
        if n == 1: return 0
        y = 5*(x:=5**(len(digits(n>>1,5))-1))
        return int((c:=n-x)*x+int(digits(c,5)[-2::-1]or'0',5) if nChai Wah Wu, Jun 13 2024

Formula

Sum_{n>=2} 1/a(n) = 2.9200482... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020

A029954 Palindromic in base 7.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 16, 24, 32, 40, 48, 50, 57, 64, 71, 78, 85, 92, 100, 107, 114, 121, 128, 135, 142, 150, 157, 164, 171, 178, 185, 192, 200, 207, 214, 221, 228, 235, 242, 250, 257, 264, 271, 278, 285, 292, 300, 307, 314, 321, 328, 335, 342, 344, 400, 456
Offset: 1

Views

Author

Keywords

Comments

Cilleruelo, Luca, & Baxter prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 03 2020

Crossrefs

Palindromes in bases 2 through 10: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113.

Programs

  • Mathematica
    f[n_,b_] := Module[{i=IntegerDigits[n,b]}, i==Reverse[i]]; lst={}; Do[If[f[n,7], AppendTo[lst,n]], {n,1000}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
    pal7Q[n_]:=Module[{idn7=IntegerDigits[n,7]},idn7==Reverse[idn7]]; Select[ Range[0,500],pal7Q] (* Harvey P. Dale, Jul 30 2015 *)
  • PARI
    ispal(n,b=7)=my(d=digits(n,b)); d==Vecrev(d) \\ Charles R Greathouse IV, May 03 2020
  • Python
    from gmpy2 import digits
    def palQgen(l,b): # generator of palindromes in base b of length <= 2*l
        if l > 0:
            yield 0
            for x in range(1,l+1):
                for y in range(b**(x-1),b**x):
                    s = digits(y,b)
                    yield int(s+s[-2::-1],b)
                for y in range(b**(x-1),b**x):
                    s = digits(y,b)
                    yield int(s+s[::-1],b)
    A029954_list = list(palQgen(4,7)) # Chai Wah Wu, Dec 01 2014
    
  • Python
    from gmpy2 import digits
    from sympy import integer_log
    def A029954(n):
        if n == 1: return 0
        y = 7*(x:=7**integer_log(n>>1,7)[0])
        return int((c:=n-x)*x+int(digits(c,7)[-2::-1]or'0',7) if nChai Wah Wu, Jun 14 2024
    

Formula

Sum_{n>=2} 1/a(n) = 3.1313768... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020

A057890 In base 2, either a palindrome or becomes a palindrome if trailing 0's are omitted.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 20, 21, 24, 27, 28, 30, 31, 32, 33, 34, 36, 40, 42, 45, 48, 51, 54, 56, 60, 62, 63, 64, 65, 66, 68, 72, 73, 80, 84, 85, 90, 93, 96, 99, 102, 107, 108, 112, 119, 120, 124, 126, 127, 128, 129, 130, 132, 136, 144, 146
Offset: 1

Views

Author

Marc LeBrun, Sep 25 2000

Keywords

Comments

Symmetric bit strings (bit-reverse palindromes), including as many leading as trailing zeros.
Fixed points of A057889, complement of A057891
n such that A000265(n) is in A006995. - Robert Israel, Jun 07 2016

Examples

			10 is included, since 01010 is a palindrome, but 11 is not because 1011 is not.
		

Crossrefs

Programs

  • Haskell
    a057890 n = a057890_list !! (n-1)
    a057890_list = 0 : filter ((== 1) . a178225 . a000265) [1..]
    -- Reinhard Zumkeller, Oct 21 2011
    
  • Maple
    dmax:= 10: # to get all terms < 2^dmax
    revdigs:= proc(n)
      local L, Ln, i;
      L:= convert(n, base, 2);
      Ln:= nops(L);
      add(L[i]*2^(Ln-i), i=1..Ln);
    end proc;
    P[0]:= {0}:
    P[1]:= {1}:
    for d from 2 to dmax do
      if d::even then
        P[d]:= { seq(2^(d/2)*x + revdigs(x), x=2^(d/2-1)..2^(d/2)-1)}
      else
        m:= (d-1)/2;
        B:={seq(2^(m+1)*x + revdigs(x), x=2^(m-1)..2^m-1)};
        P[d]:= B union map(`+`, B, 2^m)
      fi
    od:
    A:= `union`(seq(seq(map(`*`,P[d],2^k),k=0..dmax-d),d=0..dmax)):
    sort(convert(A,list)); # Robert Israel, Jun 07 2016
  • Mathematica
    PaleQ[n_Integer, base_Integer] := Module[{idn, trim = n/base^IntegerExponent[n, base]}, idn = IntegerDigits[trim, base]; idn == Reverse[idn]]; Select[Range[0, 150], PaleQ[#, 2] &] (* Lei Zhou, Dec 13 2013 *)
    pal2Q[n_]:=Module[{id=Drop[IntegerDigits[n,2],-IntegerExponent[n,2]]},id==Reverse[id]]; Join[{0},Select[Range[200],pal2Q]] (* Harvey P. Dale, Feb 26 2015 *)
    A057890Q = If[# > 0 && EvenQ@#, #0[#/2], # == #~IntegerReverse~2] &; Select[0~Range~146, A057890Q] (* JungHwan Min, Mar 29 2017 *)
    Select[Range[0, 200], PalindromeQ[IntegerDigits[#, 2] /. {b__, 0..} -> {b} ]&] (* Jean-François Alcover, Sep 18 2018 *)
  • PARI
    bitrev(n) = subst(Pol(Vecrev(binary(n>>valuation(n,2))), 'x), 'x, 2);
    is(n) = my(x = n >> valuation(n,2)); x == bitrev(x);
    concat(0, select(is,vector(147,n,n)))  \\ Gheorghe Coserea, Jun 07 2016
    
  • PARI
    is(n)=n==0 || Vecrev(n=binary(n>>valuation(n,2)))==n \\ Charles R Greathouse IV, Aug 25 2016
  • Python
    A057890 = [n for n in range(10**6) if bin(n)[2:].rstrip('0') == bin(n)[2:].rstrip('0')[::-1]] # Chai Wah Wu, Aug 12 2014
    

Formula

A030101(A030101(n)) = A030101(n). - David W. Wilson, Jun 09 2009, Jun 18 2009
A178225(A000265(a(n))) = 1. - Reinhard Zumkeller, Oct 21 2011
a(7*2^n-4*n-4) = 4^n + 1, a(10*2^n-4*n-6) = 2*4^n + 1. - Gheorghe Coserea, Apr 05 2017

A029953 Palindromic in base 6.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 14, 21, 28, 35, 37, 43, 49, 55, 61, 67, 74, 80, 86, 92, 98, 104, 111, 117, 123, 129, 135, 141, 148, 154, 160, 166, 172, 178, 185, 191, 197, 203, 209, 215, 217, 259, 301, 343, 385, 427, 434, 476, 518, 560, 602, 644, 651, 693, 735, 777, 819
Offset: 1

Views

Author

Keywords

Comments

Cilleruelo, Luca, & Baxter prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 03 2020

Crossrefs

Palindromes in bases 2 through 10: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113.

Programs

  • Magma
    [n: n in [0..900] | Intseq(n, 6) eq Reverse(Intseq(n, 6))]; // Vincenzo Librandi, Sep 09 2015
    
  • Mathematica
    f[n_,b_] := Module[{i=IntegerDigits[n,b]}, i==Reverse[i]]; lst={}; Do[If[f[n,6], AppendTo[lst,n]], {n,1000}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
  • PARI
    ispal(n,b=6)=my(d=digits(n,b)); d==Vecrev(d) \\ Charles R Greathouse IV, May 03 2020
    
  • Python
    from gmpy2 import digits
    from sympy import integer_log
    def A029953(n):
        if n == 1: return 0
        y = 6*(x:=6**integer_log(n>>1,6)[0])
        return int((c:=n-x)*x+int(digits(c,6)[-2::-1]or'0',6) if nChai Wah Wu, Jun 14 2024

Formula

Sum_{n>=2} 1/a(n) = 3.03303318... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020

A003166 Numbers whose square in base 2 is a palindrome.

Original entry on oeis.org

0, 1, 3, 4523, 11991, 18197, 141683, 1092489, 3168099, 6435309, 12489657, 17906499, 68301841, 295742437, 390117873, 542959199, 4770504939, 17360493407, 73798050723, 101657343993, 107137400475, 202491428745, 1615452642807, 4902182461643, 9274278357017, 12863364360297
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that k^2 is in A006995.
The only palindromes in this sequence are 0, 1, and 3. See AMM problem 11922. - Max Alekseyev, Oct 22 2022

Examples

			3^2 = 9 = 1001_2, a palindrome.
4523^2 = 20457529 = 1001110000010100000111001_2.
		

References

  • G. J. Simmons, On palindromic squares of non-palindromic numbers, J. Rec. Math., 5 (No. 1, 1972), 11-19.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002778 (base 10 analog), A029983 (the actual squares). In binary: A262595, A262596.
Cf. A006995.

Programs

  • Mathematica
    Do[c = RealDigits[n^2, 2][[1]]; If[c == Reverse[c], Print[n]], {n, 0, 10^9}]
  • PARI
    is(n)=my(b=binary(n^2)); b==Vecrev(b) \\ Charles R Greathouse IV, Feb 07 2017
    
  • Python
    from itertools import count, islice
    def A003166_gen(): # generator of terms
        return filter(lambda k: (s:=bin(k**2)[2:])[:(t:=(len(s)+1)//2)]==s[:-t-1:-1],count(0))
    A003166_list = list(islice(A003166_gen(),10)) # Chai Wah Wu, Jun 23 2022

Extensions

a(16) = 4770504939 found by Patrick De Geest, May 15 1999
a(17)-a(31) from Jon E. Schoenfield, May 08 2009
a(32) = 285000288617375,
a(33) = 301429589329949,
a(34) = 1178448744881657 from Don Knuth, Jan 28 2013 [who doublechecked the previous results and searched up to 2^104]

A097856 Base 10 numbers that are palindromic in bases 2 and 4.

Original entry on oeis.org

0, 1, 3, 5, 15, 17, 21, 51, 63, 65, 85, 195, 255, 257, 273, 325, 341, 771, 819, 975, 1023, 1025, 1105, 1285, 1365, 3075, 3315, 3855, 4095, 4097, 4161, 4369, 4433, 5125, 5189, 5397, 5461, 12291, 12483, 13107, 13299, 15375, 15567, 16191, 16383, 16385, 16705
Offset: 1

Views

Author

Cino Hilliard, Aug 31 2004

Keywords

Comments

Intersection of A014192 and A006995. - Michel Marcus, Oct 11 2014

Examples

			255 base 2 = 11111111 and 255 base 4 = 3333.
		

Crossrefs

Cf. A014192 (base 4), A006995 (base 2).
Previous Showing 41-50 of 233 results. Next