cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 204 results. Next

A037394 Numbers k such that every base-5 digit of k is a base-7 digit of k.

Original entry on oeis.org

1, 2, 3, 4, 17, 51, 66, 102, 109, 123, 156, 158, 162, 206, 218, 312, 317, 324, 361, 381, 416, 418, 423, 458, 462, 463, 466, 467, 468, 472, 494, 518, 545, 546, 549, 556, 557, 559, 562, 584, 606, 619, 621, 630, 640, 651, 658, 687
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List ((\\), nub)
    a037394 n = a037394_list !! (n-1)
    a037394_list = filter f [1..] where
       f x = null $ nub (ds 5 x) \\ nub (ds 7 x)
       ds b x = if x > 0 then d : ds b x' else []  where (x', d) = divMod x b
    -- Reinhard Zumkeller, May 30 2013
  • Mathematica
    Select[Range[700],SubsetQ[IntegerDigits[#,7],IntegerDigits[#,5]]&] (* Harvey P. Dale, Sep 29 2017 *)

A063432 Triangle read by rows in which k-th entry in row n is representation of n in base k, for 1 <= k <= n.

Original entry on oeis.org

1, 11, 10, 111, 11, 10, 1111, 100, 11, 10, 11111, 101, 12, 11, 10, 111111, 110, 20, 12, 11, 10, 1111111, 111, 21, 13, 12, 11, 10, 11111111, 1000, 22, 20, 13, 12, 11, 10, 111111111, 1001, 100, 21, 14, 13, 12, 11, 10, 1111111111, 1010, 101, 22, 20, 14, 13
Offset: 1

Views

Author

Henry Bottomley, Jul 20 2001

Keywords

Comments

Representation of n in base 1 is defined to be a concatenation of n 1's.
It is difficult to write twenty-one in base 11 using decimal digits.
Representation in bases greater than 10 are written in base 10. This is really nasty! - N. J. A. Sloane, Dec 06 2002

Examples

			Rows start (1), (11, 10), (111, 11, 10), (1111, 100, 11, 10), etc.
		

Crossrefs

Cf. A063431.
Columns are truncated versions of A000042, A007088, A007089, A007090, A007091, A007092, A007093, A007094, A007095, A000027 and perhaps A055649, etc.
Without the 1st column becomes A004053.

Programs

  • Mathematica
    f[n_] := Flatten[ Append[ {FromDigits[ Table[1, {n}]] }, Table[ FromDigits[ IntegerDigits[n, i]], {i, 2, n}]]]; Flatten[ Table[ f[n], {n, 1, 10}]] (* Robert G. Wilson v *)

A110605 Numbers n whose base 7 representations, interpreted as base 10 integers, are semiprimes.

Original entry on oeis.org

4, 6, 7, 11, 12, 15, 16, 19, 20, 24, 25, 26, 34, 36, 40, 44, 47, 55, 57, 61, 64, 65, 66, 73, 74, 78, 79, 80, 82, 83, 89, 92, 97, 99, 100, 101, 103, 104, 108, 109, 110, 113, 118, 124, 136, 137, 142, 145, 148, 149, 150, 152, 158, 162, 164, 167, 172, 173, 176, 181, 187
Offset: 1

Views

Author

Jonathan Vos Post, Jul 30 2005

Keywords

Comments

A108873 is the equivalent using base 3. A110602 is the equivalent using base 4. A110603 is the equivalent using base 5. A110604 is the equivalent using base 6. A110606 is the equivalent using base 8. A110607 is the equivalent using base 9.

Examples

			a(1) = 4 because 4 (base 7) = 4 (base 10) = 2 * 2, a semiprime (A001358).
a(2) = 6 because 6 (base 7) = 6 (base 10) = 2 * 3
a(3) = 7 because 7 (base 7) = 10 and 10 (base 10) = 2 * 5.
a(4) = 11 because 11 (base 7) = 14 and 14 (base 10) = 2 * 7.
a(5) = 12 because 12 (base 7) = 15 and 15 (base 10) = 3 * 5.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[187], Plus @@ Last /@ FactorInteger[FromDigits[IntegerDigits[ #, 7]]] == 2 &] (* Ray Chandler, Aug 05 2005 *)

Extensions

Extended by Ray Chandler, Aug 05 2005

A353146 Decimal repunits written in base 7.

Original entry on oeis.org

0, 1, 14, 216, 3145, 44252, 641640, 12305251, 163304624, 2516300046, 36351200665, 542225612642, 11012302601310, 143163240420331, 2224515456064634, 32255340625240206, 453016062064453015, 6552245200234552232, 125142553603416142350
Offset: 0

Views

Author

Seiichi Manyama, Apr 26 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = fromdigits(digits((10^n-1)/9, 7));

Formula

a(n) = A007093(A002275(n)).

A382413 Numbers with at least one zero in their base-7 representation.

Original entry on oeis.org

0, 7, 14, 21, 28, 35, 42, 49, 50, 51, 52, 53, 54, 55, 56, 63, 70, 77, 84, 91, 98, 99, 100, 101, 102, 103, 104, 105, 112, 119, 126, 133, 140, 147, 148, 149, 150, 151, 152, 153, 154, 161, 168, 175, 182, 189, 196, 197, 198, 199, 200, 201, 202, 203, 210, 217, 224, 231, 238
Offset: 1

Views

Author

Paolo Xausa, Mar 24 2025

Keywords

Crossrefs

Cf. analogous sequences in other bases: A062289 (base 2), A081605 (base 3), A196032 (base 4), A382415 (base 5), A382416 (base 6), A382417 (base 8), A382418 (base 9), A011540 (base 10).
Cf. A007093, A043393, A382412 (complement).

Programs

  • Mathematica
    Select[Range[0, 250], DigitCount[#, 7, 0] > 0 &]

A043281 Maximal run length in base-7 representation of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 3, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007093 (base 7).
Cf. A043276-A043290 for base-2 to base-16 analogs.

Programs

  • Mathematica
    Max[Length/@Split[IntegerDigits[#,7]]]&/@Range[100] (* Harvey P. Dale, Mar 30 2016 *)
  • PARI
    A043281(n, b=7)={my(m,c=1); while(n>0, n%b==(n\=b)%b&&c++&&next; m=max(m, c); c=1); m} \\ M. F. Hasler, Jul 23 2013
    
  • Python
    from itertools import groupby
    from sympy.ntheory.factor_ import digits
    def A043281(n): return max(len(list(g)) for k, g in groupby(digits(n,7)[1:])) # Chai Wah Wu, Mar 09 2023

A004681 Primes written in base 7.

Original entry on oeis.org

2, 3, 5, 10, 14, 16, 23, 25, 32, 41, 43, 52, 56, 61, 65, 104, 113, 115, 124, 131, 133, 142, 146, 155, 166, 203, 205, 212, 214, 221, 241, 245, 254, 256, 302, 304, 313, 322, 326, 335, 344, 346, 362, 364, 401, 403, 421, 436, 443, 445, 452, 461, 463, 506, 515, 524
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. similar sequences listed in A004680.
Cf. A007093.

Programs

  • Magma
    [Seqint(Intseq(NthPrime(n),7)): n in [1..60]]; // G. C. Greubel, Oct 10 2018
  • Mathematica
    FromDigits/@IntegerDigits[Prime[Range[1000]], 7] (* Vincenzo Librandi, Sep 03 2016 *)
  • PARI
    a(n)=subst(Pol(digits(prime(n),7)),'x,10) \\ Charles R Greathouse IV, Nov 06 2013
    
  • PARI
    vector(60, n, fromdigits(digits(prime(n), 7))) \\ G. C. Greubel, Oct 10 2018
    

Formula

a(n) = A007093(prime(n)). - Michel Marcus, Sep 03 2016

A033033 Numbers all of whose base 7 digits are odd.

Original entry on oeis.org

1, 3, 5, 8, 10, 12, 22, 24, 26, 36, 38, 40, 57, 59, 61, 71, 73, 75, 85, 87, 89, 155, 157, 159, 169, 171, 173, 183, 185, 187, 253, 255, 257, 267, 269, 271, 281, 283, 285, 400, 402, 404, 414, 416, 418, 428, 430, 432, 498, 500, 502, 512
Offset: 1

Views

Author

Keywords

Examples

			38 in base 7 is 53_7. All the digits of 38 in base 7; 5 and 3; are odd. So 38 is in the sequence. - _David A. Corneth_, Aug 24 2019
		

Crossrefs

Programs

  • Magma
    [m:m in [1..600]| Intseq(m,7) subset {1,3,5}]; // Marius A. Burtea, Aug 24 2019
  • Mathematica
    Select[Range[600],AllTrue[IntegerDigits[#,7],OddQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 28 2014 *)
  • PARI
    is(n) = {my(d = Set(digits(n, 7))); for(i = 1, #d, if(d[i]%2 == 0, return(0))); 1} \\ David A. Corneth, Aug 24 2019
    

A037398 Numbers k such that every base-6 digit of k is a base-7 digit of k.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 14, 21, 28, 35, 43, 68, 79, 86, 122, 123, 129, 165, 172, 208, 215, 246, 252, 260, 361, 373, 397, 425, 427, 431, 444, 445, 446, 469, 475, 476, 479, 481, 482, 504, 513, 520, 527, 556, 562, 583, 625, 696, 738, 756
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List ((\\), nub)
    a037398 n = a037398_list !! (n-1)
    a037398_list = filter f [1..] where
       f x = null $ nub (ds 6 x) \\ nub (ds 7 x)
       ds b x = if x > 0 then d : ds b x' else []  where (x', d) = divMod x b
    -- Reinhard Zumkeller, May 30 2013

A037402 Numbers k such that every base-7 digit of k is a base-8 digit of k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 16, 24, 32, 40, 48, 57, 85, 94, 106, 114, 133, 142, 163, 171, 196, 204, 212, 220, 224, 225, 226, 227, 228, 229, 230, 236, 244, 277, 285, 305, 334, 342, 385, 392, 401, 540, 546, 547, 550, 597, 620, 629, 646, 688
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List ((\\), nub)
    a037402 n = a037402_list !! (n-1)
    a037402_list = filter f [1..] where
       f x = null $ nub (ds 7 x) \\ nub (ds 8 x)
       ds b x = if x > 0 then d : ds b x' else []  where (x', d) = divMod x b
    -- Reinhard Zumkeller, May 30 2013
  • Mathematica
    b7b8Q[n_]:=Module[{idn7=Union[IntegerDigits[n,7]]},Intersection[ idn7, Union[ IntegerDigits[n,8]]]==idn7]; Select[Range[700],b7b8Q] (* Harvey P. Dale, Dec 15 2013 *)
Previous Showing 21-30 of 204 results. Next