cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 47 results. Next

A379430 Array read by antidiagonals: A(n,k) is the number of sensed planar maps with n vertices and k faces, n >= 1, k >= 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 5, 5, 2, 3, 14, 23, 14, 3, 6, 42, 108, 108, 42, 6, 14, 140, 501, 761, 501, 140, 14, 34, 473, 2264, 4744, 4744, 2264, 473, 34, 95, 1670, 10087, 27768, 38495, 27768, 10087, 1670, 95, 280, 5969, 44310, 153668, 279698, 279698, 153668, 44310, 5969, 280
Offset: 1

Views

Author

Andrew Howroyd, Jan 13 2025

Keywords

Comments

The planar maps considered are connected and may contain loops and parallel edges.
The number of edges is n + k - 2.

Examples

			Array begins:
=========================================================
n\k |  1    2     3      4      5      6      7     8 ...
----+----------------------------------------------------
  1 |  1    1     1      2      3      6     14    34 ...
  2 |  1    2     5     14     42    140    473  1670 ...
  3 |  1    5    23    108    501   2264  10087 44310 ...
  4 |  2   14   108    761   4744  27768 153668 ...
  5 |  3   42   501   4744  38495 279698 ...
  6 |  6  140  2264  27768 279698 ...
  7 | 14  473 10087 153668 ...
  8 | 34 1670 44310 ...
   ...
As a triangle, rows give the number of edges (first row is 0 edges):
   1;
   1,    1;
   1,    2,     1;
   2,    5,     5,     2;
   3,   14,    23,    14,     3;
   6,   42,   108,   108,    42,     6;
  14,  140,   501,   761,   501,   140,    14;
  34,  473,  2264,  4744,  4744,  2264,   473,   34;
  95, 1670, 10087, 27768, 38495, 27768, 10087, 1670, 95;
  ...
		

Crossrefs

Antidiagonal sums are A006384.
Columns 1..2 are A002995, A380237.
Cf. A269920 (rooted), A277741 (unsensed), A379431 (achiral), A342061 (2-connected), A384964 (simple).

Formula

A(n,k) = A(k,n).

A006443 Number of achiral planar maps with n edges.

Original entry on oeis.org

1, 2, 4, 14, 47, 184, 761, 3314, 14997, 69886, 333884, 1626998, 8067786, 40580084, 206734083, 1064666724, 5536480877, 29036188788, 153450351924, 816503772830, 4371551433888
Offset: 0

Views

Author

Keywords

Comments

An achiral map is a map with a sense-reversing automorphism.
The planar maps considered are connected and may contain loops and parallel edges. - Andrew Howroyd, Jan 13 2025

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=0 of A380234.
Cf. A006384 (sensed), A006385 (unsensed), A006444 (2-connected), A006445 (3-connected).

Formula

a(n) = 2*A006385(n) - A006384(n). [Liskovets eq 3a] - R. J. Mathar, Oct 01 2011

Extensions

a(0)=1 prepended by Andrew Howroyd, Jan 13 2025
a(20) added by Andrew Howroyd, Jan 20 2025

A006403 Number of unsensed 2-connected planar maps with n edges.

Original entry on oeis.org

0, 1, 2, 3, 6, 15, 36, 114, 396, 1565, 6756, 31563, 154370, 785113, 4099948, 21870704, 118624544, 652485364, 3631820462, 20426666644, 115949791342, 663640383400, 3826858500878, 22218232389849, 129802836253994
Offset: 1

Views

Author

Keywords

Comments

The maps considered here may include parallel edges. - Andrew Howroyd, Jan 13 2025

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Timothy R. Walsh, personal communication.

Crossrefs

Row sums of A379432.
Cf. A000139 (rooted), A006385, A006402 (sensed), A006407 (without parallel edges), A006444 (achiral).

Formula

a(n) = (A006402(n) + A006444(n))/2. - Andrew Howroyd, Jan 13 2025

Extensions

a(23)-a(25) added by Andrew Howroyd, Jan 13 2025

A001853 Total height of trees with n nodes.

Original entry on oeis.org

0, 1, 3, 8, 22, 58, 158, 425, 1161, 3175, 8751, 24192, 67239, 187459, 524579, 1472086, 4142639, 11685501, 33036492, 93583873, 265589158, 754998424, 2149588878, 6128914829, 17497927510, 50017546412, 143137957590, 410062891934, 1175925220607, 3375322972597
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A034781.

Formula

a(n) = Sum_{k=1..n-1} A034781(n,k)*k. - Sean A. Irvine, Mar 24 2016

Extensions

More terms from Sean A. Irvine, Mar 24 2016

A000184 Number of genus 0 rooted maps with 3 faces with n vertices.

Original entry on oeis.org

2, 22, 164, 1030, 5868, 31388, 160648, 795846, 3845020, 18211380, 84876152, 390331292, 1775032504, 7995075960, 35715205136, 158401506118, 698102372988, 3059470021316, 13341467466520, 57918065919924, 250419305769512, 1078769490401032, 4631680461623664, 19825379450255900, 84622558822506328, 360270317908904328, 1530148541536781488, 6484511936352543096, 27423786092731382000, 115756362341775227888
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.

Crossrefs

Column 3 of A269920.
Column 0 of A270407.

Programs

  • Magma
    [n*((n+1)*(n+2)*Catalan(n+1) - 3*4^n)/12: n in [2..30]]; // G. C. Greubel, Jul 18 2024
    
  • Mathematica
    a[n_] := 1/12*(2^(n+1)*(2*n+1)!!/(n-1)!-3*4^n*n); Table[a[n], {n, 2, 31}] (* Jean-François Alcover, Mar 12 2014 *)
  • SageMath
    [n*(2*(2*n+1)*binomial(2*n,n) - 3*4^n)//12 for n in range(2,30)] # G. C. Greubel, Jul 18 2024

Formula

a(n) = 2 * A029887(n-2). - Ralf Stephan, Aug 17 2004
a(n) = 4^n*Gamma(n+3/2)/(3*sqrt(Pi)*Gamma(n)) - n*4^(n-1). - Mark van Hoeij, Jul 06 2010
From G. C. Greubel, Jul 18 2024: (Start)
a(n) = (n/12)*( (n+1)*(n+2)*Catalan(n+1) - 3*4^n ).
G.f.: x*(1 - sqrt(1 - 4*x))/(1-4*x)^(5/2).
E.g.f.: (x/3)*exp(2*x)*( - 3*exp(2*x) + 3*(1+2*x)*BesselI(0, 2*x) + (3+8*x)*BesselI(1, 2*x) + 2*x*BesselI(2, 2*x) ). (End)

Extensions

More terms from Sean A. Irvine, Nov 14 2010

A004139 Odd primes excluding 5.

Original entry on oeis.org

3, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A007401. - Reinhard Zumkeller, Jul 18 2011
Primes not dividing 10. Therefore primes p for which the decimal expansion of 1/p does not terminate (primes in A085837). - Jeppe Stig Nielsen, Dec 15 2019

References

  • John H. Conway, R. K. Guy, The Book of Numbers, Copernicus Press, p. 162.

Crossrefs

Subsequence of A065091, A007401, and A085837.

Programs

A000365 Number of genus 0 rooted planar maps with 4 faces and n vertices.

Original entry on oeis.org

5, 93, 1030, 8885, 65954, 442610, 2762412, 16322085, 92400330, 505403910, 2687477780, 13957496098, 71053094420, 355548314180, 1752827693528, 8529176056965, 41026491589722, 195327793313790, 921451498774660, 4311086414580022, 20019238138410940
Offset: 3

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.

Crossrefs

Column 4 of A269920.
Column 0 of A270408.

Programs

  • Mathematica
    nn = 20; CoefficientList[Series[x^2 (1 - Sqrt[1 - 4 x]) (7 + 4 x - 2 Sqrt[1 - 4 x])/(2 (4 x - 1)^4), {x, 0, nn}], x] (* T. D. Noe, Jun 19 2012 *)
  • PARI
    seq(n)={my(g=sqrt(1-4*x + O(x*x^n))); Vec((1-g)*(7+4*x-2*g)/(2*(1-4*x)^4))} \\ Andrew Howroyd, Mar 27 2021

Formula

G.f.: x^2*(1-sqrt(1-4*x))*(7+4*x-2*sqrt(1-4*x))/(2*(4*x-1)^4). - corrected for right offset by Vaclav Kotesovec, Aug 13 2013
a(n) ~ n^3*4^n/24 * (1-4/(sqrt(Pi*n))). - Vaclav Kotesovec, Aug 13 2013

Extensions

More terms from Sean A. Irvine, Nov 14 2010

A005645 Number of sensed 3-connected planar maps with n edges.

Original entry on oeis.org

1, 0, 1, 2, 3, 4, 15, 32, 89, 266, 797, 2496, 8012, 26028, 85888, 286608, 965216, 3278776, 11221548, 38665192, 134050521, 467382224, 1638080277, 5768886048, 20407622631, 72494277840, 258527335373, 925322077852, 3323258053528, 11973883092034, 43273374700200, 156836969693756, 569967330200576, 2076647113454878, 7584534277720818, 27764845224462192, 101862027752012402, 374484866509396780, 1379489908513460150
Offset: 6

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002840 (unsensed), A239893.

Formula

a(n) = Sum_{k=4..n-2} A239893(k, n+2-k). - Andrew Howroyd, Mar 27 2021

Extensions

More terms and b-file added by N. J. A. Sloane, May 08 2012

A006444 Number of achiral 2-connected planar maps with n edges.

Original entry on oeis.org

0, 1, 2, 3, 6, 14, 30, 77, 196, 525, 1414, 3960, 11056, 31636, 90818, 264657, 774146, 2289787, 6798562, 20354005, 61164374, 184985060, 561433922, 1712696708, 5241637812
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, personal communication.

Crossrefs

Cf. A006402 (sensed), A006403 (unsensed), A006443 (connected), A006445 (3-connected).

A034854 Triangle giving number of labeled trees with n >= 3 nodes and diameter d >= 2.

Original entry on oeis.org

3, 4, 12, 5, 60, 60, 6, 210, 720, 360, 7, 630, 6090, 7560, 2520, 8, 1736, 47040, 112560, 80640, 20160, 9, 4536, 363384, 1496880, 1829520, 907200, 181440, 10, 11430, 2913120, 19207440, 36892800, 28274400, 10886400, 1814400
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins:
  3;
  4,   12;
  5,   60,   60;
  6,  210,  720,  360;
  7,  630, 6090, 7560, 2520;
  ...
		

Crossrefs

Formula

Reference gives recurrence.
From Geoffrey Critzer, Aug 02 2022: (Start)
Sum_{d even} a(n,d) = A356292(n) and Sum_{d odd} a(n,d) = A355671(n).
Let G_k(x) be the e.g.f. counting the number of rooted labeled trees with height <= k. Then G_k(x) is defined recursively by G_0(x) = x, G_k(x) = x*exp(G_{k-1}(x)). Let H_k(x) be the e.g.f. counting rooted labeled trees of height k. Then H_0(x) = x, H_k(x) = G_k(x) - G_{k-1}(x) for k >= 1. The e.g.f. for column d = 2*m+1 is H_m(x)^2/2. The e.g.f. for column d = 2*m is G_{m-1}(x)*(exp(H_{m-1}(x)) - 1 - H_{m-1}(x)). (End)

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 27 2004
Name corrected by Geoffrey Critzer, Aug 02 2022
Previous Showing 21-30 of 47 results. Next