cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 52 results. Next

A128674 Numbers m such that m^k does not divide the denominator of the m-th generalized harmonic number H(m,k) nor the denominator of the m-th alternating generalized harmonic number H'(m,k), for k = 4.

Original entry on oeis.org

42, 110, 156, 272, 294, 342, 506, 812, 930, 1210, 1332, 1640, 1806, 2028, 2058, 2162, 2756, 3422, 3660, 4422, 4624, 4970, 5256, 6162, 6498, 6806, 7832, 9312, 10100, 10506, 11342, 11638, 11772, 12656, 13310, 14406, 16002, 17030, 18632, 19182, 22052, 22650, 23548, 24492, 26364
Offset: 1

Views

Author

Alexander Adamchuk, Mar 20 2007

Keywords

Comments

Generalized harmonic numbers are defined as H(m,k) = Sum_{j=1..m} 1/j^k. Alternating generalized harmonic numbers are defined as H'(m,k) = Sum_{j=1..m} (-1)^(j+1)/j^k.
Sequence contains geometric progressions of the form (p-1)*p^k for k > 0 and some prime p > 5. Note the factorization of initial terms of {a(n)} = {6*7, 10*11, 12*13, 16*17, 6*7^2, 18*19, 22*23, 28*29, 30*31, 10*11*2, 36*37, 40*41, 42*43, 12*13^2, 6*7^3, ...}. See more details in Comments at A128672 and A125581.

Crossrefs

Programs

  • Mathematica
    k=4; f=0; g=0; Do[ f=f+1/n^k; g=g+(-1)^(n+1)*1/n^k; kf=Denominator[f]; kg=Denominator[g]; If[ !IntegerQ[kf/n^k] && !IntegerQ[kg/n^k], Print[n] ], {n,1,2000} ]

Extensions

Edited and extended by Max Alekseyev, May 09 2010

A103351 Numerators of sum_{k=1..n} 1/k^9 = Zeta(9,n).

Original entry on oeis.org

1, 513, 10097891, 5170139875, 10097934603139727, 373997614931101, 15092153145114981831307, 7727182467755471289426059, 4106541588424891370931874221019, 4106541592523201949266162797531
Offset: 1

Views

Author

Wolfdieter Lang, Feb 15 2005

Keywords

Comments

a(n) gives the partial sums, Zeta(9,n), of Euler's Zeta(9). Zeta(k,n) is also called H(k,n) because for k=1 these are the harmonic numbers H(n) A001008/A002805.
For the denominators see A103352 and for the rationals Zeta(9,n) see the W. Lang link under A103345.

Crossrefs

Programs

Formula

a(n) = numerator(sum_{k=1..n} 1/k^9).
G.f. for rationals Zeta(9, n): polylogarithm(9, x)/(1-x).

A128671 Least number k > 0 such that k^p does not divide the denominator of generalized harmonic number H(k,p) nor the denominator of alternating generalized harmonic number H'(k,p), where p = prime(n).

Original entry on oeis.org

20, 94556602, 444, 104, 77, 3504, 1107, 104, 2948, 903, 77, 1752, 77, 104, 370
Offset: 1

Views

Author

Alexander Adamchuk, Mar 24 2007, Mar 26 2007

Keywords

Comments

Generalized harmonic numbers are defined as H(m,k) = Sum_{i=1..m} 1/i^k. Alternating generalized harmonic numbers are defined as H'(m,k) = Sum_{i=1..m} (-1)^(i+1)*1/i^k.
a(18)..a(24) = {77,104,77,136,104,370,136}. a(26)..a(27) = {77,104}.
a(n) is currently unknown for n = {16,17,25,...}. See more details in Comments at A128672 and A125581.

Examples

			a(2) = A128673(1) = 94556602.
		

Crossrefs

Formula

a(n) = A128670(prime(n)).

Extensions

a(9) = 2948 and a(12) = 1752 from Max Alekseyev
Edited by Max Alekseyev, Feb 20 2019

A255008 Array T(n,k) read by ascending antidiagonals, where T(n,k) is the numerator of polygamma(n, 1) - polygamma(n, k).

Original entry on oeis.org

0, 0, -1, 0, 1, -3, 0, -2, 5, -11, 0, 6, -9, 49, -25, 0, -24, 51, -251, 205, -137, 0, 120, -99, 1393, -2035, 5269, -49, 0, -720, 975, -8051, 22369, -256103, 5369, -363, 0, 5040, -5805, 237245, -257875, 14001361, -28567, 266681, -761, 0, -40320
Offset: 0

Views

Author

Jean-François Alcover, Feb 12 2015

Keywords

Comments

Up to signs, row n=0 is A001008/A002805, row n=1 is A007406/A007407 and column k=1 is n!.

Examples

			Array of fractions begin:
0,  -1,  -3/2,       -11/6,          -25/12,               -137/60, ...
0,   1,   5/4,       49/36,         205/144,             5269/3600, ...
0,  -2,  -9/4,    -251/108,       -2035/864,        -256103/108000, ...
0,   6,  51/8,    1393/216,      22369/3456,      14001361/2160000, ...
0, -24, -99/4,   -8051/324,   -257875/10368,   -806108207/32400000, ...
0, 120, 975/8, 237245/1944, 15187325/124416, 47463376609/388800000, ...
...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := (-1)^(n+1)*n!*HarmonicNumber[k-1, n+1] // Numerator; Table[T[n-k, k], {n, 0, 10}, {k, 1, n}] // Flatten

Formula

Fraction giving T(n,k) = polygamma(n, 1) - polygamma(n, k) = (-1)^(n+1)*n! * sum_{j=1..k-1} 1/j^(n+1) = (-1)^(n+1)*n!*H(k-1, n+1), where H(n,r) gives the n-th harmonic number of order r.

A255009 Array T(n,k) read by ascending antidiagonals, where T(n,k) is the denominator of polygamma(n, 1) - polygamma(n, k).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 4, 6, 1, 1, 4, 36, 12, 1, 1, 8, 108, 144, 60, 1, 1, 4, 216, 864, 3600, 20, 1, 1, 8, 324, 3456, 108000, 3600, 140, 1, 1, 8, 1944, 10368, 2160000, 12000, 176400, 280, 1, 1, 16, 1944, 124416, 32400000, 2160000, 4116000
Offset: 0

Views

Author

Jean-François Alcover, Feb 12 2015

Keywords

Comments

See A255008.

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := (-1)^(n+1)*n!*HarmonicNumber[k-1, n+1] // Denominator; Table[T[n-k, k], {n, 0, 10}, {k, 1, n}] // Flatten

A276487 Denominator of Sum_{k=1..n} 1/k^n.

Original entry on oeis.org

1, 4, 216, 20736, 777600000, 46656000000, 768464444160000000, 247875891108249600000000, 4098310578334288576512000000000, 413109706296096288512409600000000, 7425496288284402957501110551810198732800000000000
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 05 2016

Keywords

Comments

Also denominator of zeta(n) - Hurwitz zeta(n,n+1), where zeta(s) is the Riemann zeta function and Hurwitz zeta(s,a) is the Hurwitz zeta function.
Sum_{k>=1} 1/k^n = zeta(n).

Examples

			1, 5/4, 251/216, 22369/20736, 806108207/777600000, 47464376609/46656000000, 774879868932307123/768464444160000000, ...
a(3) = 216, because 1/1^3 + 1/2^3 + 1/3^3 = 251/216.
		

Crossrefs

Cf. A001008, A002805, A007406, A007407, A031971, A276485 (numerators).

Programs

  • Maple
    A276487:=n->denom(add(1/k^n, k=1..n)): seq(A276487(n), n=1..12); # Wesley Ivan Hurt, Sep 07 2016
  • Mathematica
    Table[Denominator[HarmonicNumber[n, n]], {n, 1, 11}]
  • PARI
    a(n) = denominator(sum(k=1, n, 1/k^n)); \\ Michel Marcus, Sep 06 2016

A373440 Denominator of sum of reciprocals of square divisors of n.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 4, 1, 1, 1, 16, 1, 9, 1, 4, 1, 1, 1, 4, 25, 1, 9, 4, 1, 1, 1, 16, 1, 1, 1, 18, 1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 16, 49, 25, 1, 4, 1, 9, 1, 4, 1, 1, 1, 4, 1, 1, 9, 64, 1, 1, 1, 4, 1, 1, 1, 18, 1, 1, 25, 4, 1, 1, 1, 16, 81, 1, 1, 4, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 05 2024

Keywords

Examples

			1, 1, 1, 5/4, 1, 1, 1, 5/4, 10/9, 1, 1, 5/4, 1, 1, 1, 21/16, 1, 10/9, 1, 5/4, 1, 1, 1, 5/4, 26/25, ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 85; CoefficientList[Series[Sum[x^(k^2)/(k^2 (1 - x^(k^2))), {k, 1, nmax}], {x, 0, nmax}], x] // Rest // Denominator
    f[p_, e_] := (p^2 - p^(-2*Floor[e/2]))/(p^2-1); a[1] = 1; a[n_] := Denominator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Jun 26 2024 *)
  • PARI
    a(n) = denominator(sumdiv(n, d, if (issquare(d), 1/d))); \\ Michel Marcus, Jun 05 2024

Formula

Denominators of coefficients in expansion of Sum_{k>=1} x^(k^2)/(k^2*(1-x^(k^2))).
a(n) is the denominator of Sum_{d^2|n} 1/d^2.

A035166 Let d(m) = denominator of Sum_{k=1..m} 1/k^2 and consider f(m) = product of primes which appear to odd powers in d(m); sequence lists m such that f(m) is different from f(m-1).

Original entry on oeis.org

1, 10, 15, 20, 25, 42, 49, 50, 55, 66, 75, 78, 91, 100, 110, 121, 125, 136, 153, 156, 164, 169, 171, 182, 189, 190, 205, 250, 253, 272, 276, 289, 294, 342, 343, 354, 361, 375, 406, 413, 435, 465, 473, 496, 500, 506, 516, 529, 555, 592, 605, 625
Offset: 1

Views

Author

Bill Gosper, Sep 04 2002

Keywords

Comments

The prime 479 first appears in f(m) at m = 2395, ahead of 71, which first appears in f(2485).
The first occurrence of four distinct primes is at m = 2500, with 5^7, 17^3, 71 and 479.
For 1890 < m < 2006, d(m) is a square (f(m)=1). The lone prime in 1875 .. 1890 is 61 and in 2006 .. 2027 it is 59.
It appears that f(m) can differ from f(m-1) in at most one prime.
(f from definition) = A007913, squarefree part. - Reinhard Zumkeller, Jul 06 2012

Examples

			f(10) = 5 is the first time f(m) > 1. The 5 persists until it disappears at m = 15.
		

Crossrefs

Programs

  • Haskell
    import Data.List (findIndices)
    a035166 n = a035166_list !! (n-1)
    a035166_list = map (+ 1) $ findIndices (/= 0) $ zipWith (-) (tail gs) gs
       where gs = 0 : map a007913 a007407_list
    -- Reinhard Zumkeller, Jul 06 2012
    
  • Macsyma
    for k:1 do (subset(factor_number(denom(harmonic(k,2))), lambda([x],oddp(second(x)))), if old#old:%% then print(k,%%))
    
  • Mathematica
    d[n_] := Denominator[ HarmonicNumber[n, 2]]; f[n_] := Times @@ Select[ FactorInteger[d[n]], OddQ[#[[2]]]&][[All, 1]]; A035166 = Join[{1}, Select[ Range[1000], f[#] != f[#-1]&]] (* Jean-François Alcover, Feb 26 2016 *)
  • PARI
    d(m) = denominator(sum(k=1, m, 1/k^2));
    f(m) = my(f=factor(d(m))); for (k=1, #f~, if (!(f[k,2] % 2), f[k,2] = 0)); factorback(f);
    isok(m) = if (m==1, 1, f(m) != f(m-1)); \\ Michel Marcus, Sep 06 2023

A070985 Number of terms in the simple continued fraction for Sum_{k=1..n} 1/k^2.

Original entry on oeis.org

1, 2, 5, 7, 9, 7, 10, 20, 18, 14, 22, 19, 18, 24, 26, 24, 30, 30, 28, 37, 25, 30, 35, 35, 34, 38, 47, 52, 49, 54, 40, 49, 49, 69, 57, 67, 78, 67, 67, 68, 67, 64, 65, 86, 76, 81, 92, 79, 83, 83, 95, 82, 85, 80, 84, 95, 92, 91, 121, 105, 100, 108, 111, 109, 118, 105, 110, 88
Offset: 1

Views

Author

Benoit Cloitre, May 18 2002

Keywords

Comments

Sum_{k>=1} 1/k^2 = zeta(2) = Pi^2/6.

Examples

			The simple continued fraction for Sum_{k=1..10} 1/k^2 is [1, 1, 1, 4, 1, 1, 10, 4, 1, 2, 5, 2, 1, 24] which contains 14 terms, hence a(10) = 14.
		

Crossrefs

Programs

  • Mathematica
    lcf[f_] := Length[ContinuedFraction[f]]; lcf /@ Accumulate[Table[1/k^2, {k, 1, 100}]] (* Amiram Eldar, Apr 30 2022 *)
  • PARI
    for(n=1,100,print1(length(contfrac(sum(i=1,n,1/i^2))),","))

Formula

Limit_{n ->infinity} a(n)/n = C =1.6....

A103716 Numerators of sum_{k=1..n} 1/k^10 =: Zeta(10,n).

Original entry on oeis.org

1, 1025, 60526249, 61978938025, 605263128567754849, 605263138567754849, 170971856382109814342232401, 175075181098169912564190119249, 10338014371627802833957102351534201, 413520574906423083987893722912609
Offset: 1

Views

Author

Wolfdieter Lang, Feb 15 2005

Keywords

Comments

a(n) gives the partial sums, Zeta(10,n), of Euler's Zeta(10). Zeta(k,n) is also called H(k,n) because for k=1 these are the harmonic numbers H(n) = A001008/A002805.
For the denominators see A103717 and for the rationals Zeta(10,n) see the W. Lang link under A103345.

Crossrefs

Programs

Formula

a(n) = numerator(sum_{k=1..n} 1/k^10).
G.f. for rationals Zeta(10, n): polylogarithm(10, x)/(1-x).
Previous Showing 21-30 of 52 results. Next