A258896 Divisorial primes p of the form p = 1 + k^2 where k^2 = Product_{d|k} d= A007955(k) for some k.
2, 37, 101, 197, 677, 5477, 8837, 17957, 21317, 42437, 98597, 106277, 148997, 217157, 401957, 454277, 1196837, 1378277, 1674437, 1705637, 1833317, 1865957, 2390117, 2735717, 3118757, 3147077, 3587237, 3865157, 4104677, 4519877, 4726277, 5410277, 6728837, 7043717
Offset: 1
Keywords
Examples
Number 101 is in sequence because 100 is the product of divisors of 10; 101 - 1 = 100 = A007955(sqrt(101 - 1)).
Links
- Jaroslav Krizek, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[n: n in [1..10000000] | IsPrime(n) and n-1 eq (&*(Divisors(Floor(Sqrt(n-1)))))];
-
PARI
lista(nn) = {forprime(p=2, nn, if (issquare(pp=(p-1)) && (k=sqrtint(pp)) && (d=divisors(k)) && (1+prod(j=1, #d, d[j])==p), print1(p, ", ")););} \\ Michel Marcus, Jul 08 2015
Comments