cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A258896 Divisorial primes p of the form p = 1 + k^2 where k^2 = Product_{d|k} d= A007955(k) for some k.

Original entry on oeis.org

2, 37, 101, 197, 677, 5477, 8837, 17957, 21317, 42437, 98597, 106277, 148997, 217157, 401957, 454277, 1196837, 1378277, 1674437, 1705637, 1833317, 1865957, 2390117, 2735717, 3118757, 3147077, 3587237, 3865157, 4104677, 4519877, 4726277, 5410277, 6728837, 7043717
Offset: 1

Views

Author

Jaroslav Krizek, Jun 20 2015

Keywords

Comments

Sequence lists divisorial primes p from A258455 such that p-1 = A007955(sqrt(p-1)).
If 1 + Product_{d|k} d for some k > 1 is a prime p other than 3, then p-1 is a square and p is either of the form k^2 + 1 or h^2 + 1 where h>k. In this sequence are divisorial primes of the first kind. Divisorial primes of the second kind are in A258897.
With number 3, complement of A258897 with respect to A258455.
All terms > 2 are of the form 4*q^2 + 1 where q = prime (see A052292).
Subsequence of A002496 (primes of the form k^2 + 1), and the corresponding k are a subsequence of A007422. - Michel Marcus, Jul 09 2015

Examples

			Number 101 is in sequence because 100 is the product of divisors of 10; 101 - 1 = 100 = A007955(sqrt(101 - 1)).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..10000000] | IsPrime(n) and n-1 eq (&*(Divisors(Floor(Sqrt(n-1)))))];
    
  • PARI
    lista(nn) = {forprime(p=2, nn, if (issquare(pp=(p-1)) && (k=sqrtint(pp)) && (d=divisors(k)) && (1+prod(j=1, #d, d[j])==p), print1(p, ", ")););} \\ Michel Marcus, Jul 08 2015

Formula

For n>1; a(n) = 4*(A052291(n))^2 + 1 = A052292(n).

A259021 Numbers k such that k^2 = Product_{d|k} d (= A007955(k)) and simultaneously k^2 + 1 is a divisorial prime (A258455).

Original entry on oeis.org

1, 6, 10, 14, 26, 74, 94, 134, 146, 206, 314, 326, 386, 466, 634, 674, 1094, 1174, 1294, 1306, 1354, 1366, 1546, 1654, 1766, 1774, 1894, 1966, 2026, 2126, 2174, 2326, 2594, 2654, 2746, 2974, 2986, 3046, 3106, 3134, 3214, 3254, 3274, 3314, 3326, 3334, 3446
Offset: 1

Views

Author

Jaroslav Krizek, Sep 01 2015

Keywords

Comments

First deviation from A259020 is at a(15).
With number 2 complement of A259023 with respect to A118369.
1 together with squarefree semiprimes (A006881) k such that k^2 + 1 is prime. Without the squarefree restriction there will be only one more term, 4. - Amiram Eldar, Sep 25 2022

Examples

			The number 10 is in sequence because 10^2 = 1*2*5*10 = 100 and simultaneously 101 is prime.
		

Crossrefs

Union of {1} and (intersection of A005574 and A006881).
Subsequence of A007422, A048943, A259020, A118369.

Programs

  • Magma
    [Floor(Sqrt(n-1)): n in [1..10000000] | IsPrime(n) and n-1 eq (&*(Divisors(Floor(Sqrt(n-1)))))];
    
  • Mathematica
    Prepend[2*Select[Prime[Range[2, 300]], PrimeQ[4 #^2 + 1] &], 1] (* Amiram Eldar, Sep 25 2022 *)
  • Sage
    a = [n for n in range(1,100000) if is_prime(n^2+1) and n^2==prod(list(divisors(n)))] # Danny Rorabaugh, Sep 21 2015

Formula

a(n) = 2*A052291(n) for n > 1. - Amiram Eldar, Sep 25 2022

A066423 Composite numbers n such that the product of proper divisors of the n does not equal n.

Original entry on oeis.org

4, 9, 12, 16, 18, 20, 24, 25, 28, 30, 32, 36, 40, 42, 44, 45, 48, 49, 50, 52, 54, 56, 60, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 116, 117, 120, 121, 124, 126, 128, 130, 132
Offset: 1

Views

Author

Robert G. Wilson v, Dec 26 2001

Keywords

Comments

A084115(a(n))>1; complement of A084116. - Reinhard Zumkeller, May 12 2003

Examples

			The fourth composite number is 9. Its proper or aliquot divisors are 1 and 3. The product of 1 and 3 equals 3 which is not equal to 9. Therefore 9 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Composite[n_] := FixedPoint[n + PrimePi[ # ] + 1 &, n + PrimePi[n] + 1]; Do[m = Composite[n]; If[ Apply[ Times, Drop[ Divisors[m], -1]] != m, Print[m]], {n, 1, 100} ]
    Select[Range[150],CompositeQ[#]&&Times@@Most[Divisors[#]]!=#&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 18 2020 *)
  • PARI
    is(n)=my(d=numdiv(n)); d>4 || d==3 \\ Charles R Greathouse IV, Oct 15 2015

A189974 Numbers m such that d(m-1) = d(m+1) = 4, where d(k) is the number of divisors of k (A000005).

Original entry on oeis.org

7, 9, 34, 56, 86, 92, 94, 124, 142, 144, 160, 184, 186, 202, 204, 214, 216, 218, 220, 236, 248, 266, 300, 302, 304, 320, 322, 328, 340, 342, 392, 394, 412, 414, 416, 446, 452, 470, 472, 516, 518, 534, 536, 544, 552, 580, 582, 590, 634, 668, 670, 680, 686
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 03 2011

Keywords

Comments

Numbers m such that m-1 and m+1 are both multiplicatively perfect numbers A007422.
Conjecture: all terms but the first two are even numbers. - Harvey P. Dale, Jul 21 2025
Proof of conjecture: if m is odd and > 10 then either m-1 or m+1 is divisible by 4 and > 8 as well. Let t be the number from {m-1, m+1} divisible by 4. Then t is a power of 2 that is > 8 and so has more than two divisors or it has an odd prime divisor such that it has more than 4 divisors. Both exclude the odd m > 8 from the sequence. - David A. Corneth, Aug 05 2025

Crossrefs

Programs

  • Maple
    with(numtheory): A189974 := proc(n) option remember: local k: if(n=1)then return 7:else k:=procname(n-1)+1: do if(tau(k-1)=4 and tau(k+1)=4)then return k: fi: k:=k+1: od: fi: end: seq(A189974(n),n=1..60); # Nathaniel Johnston, May 04 2011
  • Mathematica
    Select[Range[2, 754], DivisorSigma[0, # - 1] == DivisorSigma[0, # + 1] == 4 &]
    Flatten[Position[Partition[DivisorSigma[0,Range[700]],3,1],?(#[[1]]==#[[3]]==4&),1,Heads->False]]+1 (* _Harvey P. Dale, Jul 21 2025 *)

A119586 Triangle where T(n,m) = (n+1-m)-th positive integer with (m+1) divisors.

Original entry on oeis.org

2, 3, 4, 5, 9, 6, 7, 25, 8, 16, 11, 49, 10, 81, 12, 13, 121, 14, 625, 18, 64, 17, 169, 15, 2401, 20, 729, 24, 19, 289, 21, 14641, 28, 15625, 30, 36, 23, 361, 22, 28561, 32, 117649, 40, 100, 48, 29, 529, 26, 83521, 44, 1771561, 42, 196, 80, 1024, 31, 841, 27
Offset: 1

Views

Author

Leroy Quet, May 31 2006

Keywords

Comments

From Peter Munn, May 17 2023: (Start)
As a square array A(n,m), n, m >= 1, read by ascending antidiagonals, A(n,m) is the n-th positive integer with m+1 divisors.
Thus both formats list the numbers with m+1 divisors in their m-th column. For the corresponding sequences giving numbers with a specific number of divisors see the index entries link.
(End)

Examples

			Looking at the 4th row, 7 is the 4th positive integer with 2 divisors, 25 is the 3rd positive integer with 3 divisors, 8 is the 2nd positive integer with 4 divisors and 16 is the first positive integer with 5 divisors. So the 4th row is (7,25,8,16).
The triangle T(n,m) begins:
  n\m:    1     2     3     4     5     6     7
  ---------------------------------------------
   1 :    2
   2 :    3     4
   3 :    5     9     6
   4 :    7    25     8    16
   5 :   11    49    10    81    12
   6 :   13   121    14   625    18    64
   7 :   17   169    15  2401    20   729    24
  ...
Square array A(n,m) begins:
  n\m:     1      2      3       4      5  ...
  --------------------------------------------
   1 :     2      4      6      16     12  ...
   2 :     3      9      8      81     18  ...
   3 :     5     25     10     625     20  ...
   4 :     7     49     14    2401     28  ...
   5 :    11    121     15   14641     32  ...
  ...
		

Crossrefs

Columns: A000040, A001248, A007422, A030514, A030515, A030516, A030626, A030627, A030628, ... (see the index entries link for more).
Cf. A073915.
Diagonals (equivalently, rows of the square array) start: A005179\{1}, A161574.
Cf. A091538.

Programs

  • Mathematica
    t[n_, m_] := Block[{c = 0, k = 1}, While[c < n + 1 - m, k++; If[DivisorSigma[0, k] == m + 1, c++ ]]; k]; Table[ t[n, m], {n, 11}, {m, n}] // Flatten (* Robert G. Wilson v, Jun 07 2006 *)

Extensions

More terms from Robert G. Wilson v, Jun 07 2006

A292286 a(n) = k if the product of the divisors of n is n^k for some integer k, or -1 if no such k exists. For the ambiguous case, define a(1) = 0.

Original entry on oeis.org

0, 1, 1, -1, 1, 2, 1, 2, -1, 2, 1, 3, 1, 2, 2, -1, 1, 3, 1, 3, 2, 2, 1, 4, -1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, -1, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 5, -1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 6, 1, 2, 3, -1, 2, 4, 1, 3, 2, 4, 1, 6, 1, 2, 3, 3, 2, 4, 1, 5, -1, 2, 1, 6, 2, 2, 2, 4, 1, 6, 2, 3, 2, 2, 2, 6, 1, 3, 3, -1
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Sep 13 2017

Keywords

Comments

If the number of divisors (nd) of n > 1 is odd, then a(n) = -1, else a(n) = nd/2. - Michel Marcus, Sep 14 2017
First occurrence of k beginning with -1 is A293570(r). - Robert G. Wilson v, Oct 10 2017
Records occur for A293570(r): 4, 6, 12, 24, 48, 60, 192, 240, 3072, 12288, 196608, 786432, 12582912, 805306368, etc. - Robert G. Wilson v, Oct 10 2017

Examples

			a(10) = 2 because divisors of 10 are 1,2,5,10 with product 100 = 10^2.
		

Crossrefs

Numbers n such that the product of divisors of n is n^k: A000040 (k = 1), A007422 (k = 2), A162947 (k = 3), A111398 (k = 4), A030628 (k = 5), A030630 (k = 6).

Programs

  • Mathematica
    Table[Boole[n == 1] + If[OddQ@ #, -1, #/2] &@ DivisorSigma[0, n], {n, 100}] (* Michael De Vlieger, Sep 15 2017 *)
  • PARI
    a(n) = if (n==1, 0, my(nd = numdiv(n)); if (nd % 2, -1, nd/2)); \\ Michel Marcus, Sep 14 2017
    
  • PARI
    a(n)=my(k=numdiv(n)); if(k%2, if(n>1, -1, 0), k/2) \\ Charles R Greathouse IV, Sep 19 2017

Formula

a(1) = 0, a(A000290(n+1)) = -1, a(A000037(n+1)) = A056924(A000037(n+1)), where A000290 = the squares and A000037 = the nonsquares.

Extensions

Definition corrected by Charles R Greathouse IV, Sep 13 2017

A338483 a(n) is the smallest number having n smaller numbers with the same number of divisors.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 125, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187, 194, 201, 202, 203, 205, 206, 209, 213
Offset: 1

Views

Author

Ivan N. Ianakiev, Oct 30 2020

Keywords

Comments

Inspired by A047983.
Are there prime terms greater than 31?

Examples

			The smallest number having two smaller numbers (2 and 3) with the same number of divisors is 5, so a(2) is 5.
		

Crossrefs

Programs

  • Maple
    N:= 500: # for terms before the first term > N
    T:= map(numtheory:-tau, [$1..N]):
    M:= max(T):
    V:= Vector(M):
    for n from 1 to N do
      v:= T[n];
      V[v]:= V[v]+1;
      if not assigned(R[V[v]]) then R[V[v]]:= n fi
    od:
    for nn from 1 while assigned(R[nn]) do od:
    seq(R[i],i=2..nn-1); # Robert Israel, Oct 30 2020
  • Mathematica
    f[n_]:=With[{tau=DivisorSigma[0,n]},Length[Select[Range[n-1],DivisorSigma[0,#]==tau&]]];t=Table[f[n],{n,1,300}]; a[n_]:=FirstPosition[t,n]; Rest[a/@Range[0,65]]//Flatten (* f(n) by Jean-François Alcover at A047983 *)
  • PARI
    f(n) = {my(d=numdiv(n)); sum(k=1, n-1, (numdiv(k)==d))} \\ A047983
    a(n) = my(k=1); while (f(k)!= n, k++); k; \\ Michel Marcus, Oct 30 2020

Formula

A047983(a(n)) = n. - Rémy Sigrist, Dec 06 2020

A385350 Numbers j such that the product of odd proper divisors of j is j.

Original entry on oeis.org

1, 15, 21, 27, 33, 35, 39, 51, 55, 57, 65, 69, 77, 85, 87, 91, 93, 95, 111, 115, 119, 123, 125, 129, 133, 141, 143, 145, 155, 159, 161, 177, 183, 185, 187, 201, 203, 205, 209, 213, 215, 217, 219, 221, 235, 237, 247, 249, 253, 259, 265, 267, 287, 291, 295, 299
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 26 2025

Keywords

Comments

Fixed points of A385349.
Odd terms in A007422.
Also 1 with odd numbers with exactly 4 divisors. - David A. Corneth, Jun 26 2025

Crossrefs

Programs

  • Maple
    q:= n-> n=1 or n::odd and numtheory[tau](n)=4:
    select(q, [$1..500])[];  # Alois P. Heinz, Jun 26 2025
  • Mathematica
    A385349[n_] := Times @@ Select[Divisors[n], # < n && OddQ[#] &]; Select[Range[300], A385349[#] == # &]
  • PARI
    isok(k) = vecprod(select((x->((x%2)==1) && (xMichel Marcus, Jun 26 2025
    
  • PARI
    is(n) = (n == 1) || (bitand(n, 1) && numdiv(n) == 4) \\ David A. Corneth, Jun 26 2025
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange
    def A385350(n):
        def f(x): return int(n-1+x-primepi(integer_nthroot(x,3)[0])+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(3, s+1)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Jun 27 2025

A189986 Numbers of the form 4k+1 having exactly 4 divisors.

Original entry on oeis.org

21, 33, 57, 65, 69, 77, 85, 93, 125, 129, 133, 141, 145, 161, 177, 185, 201, 205, 209, 213, 217, 221, 237, 249, 253, 265, 301, 305, 309, 321, 329, 341, 365, 377, 381, 393, 413, 417, 437, 445, 453, 469, 473, 481, 485, 489, 493, 497, 501, 505, 517, 533, 537, 545
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 03 2011

Keywords

Comments

Intersection of A016813 and A030513; subsequence of A007422.
Numbers p*q with p == q (mod 4) together with p^3 with p == 1 (mod 4), p and q distinct primes. - Charles R Greathouse IV, May 03 2011

Crossrefs

Programs

  • Magma
    [ n: n in [1..600 by 4] | #Divisors(n) eq 4 ]; // Klaus Brockhaus, May 04 2011
  • Mathematica
    Select[4Range[200]+1,DivisorSigma[0,#]==4&] (* Harvey P. Dale, May 11 2011 *)

Extensions

Corrected (497 inserted) by Klaus Brockhaus, May 04 2011

A277169 Product of squares of proper divisors of n.

Original entry on oeis.org

1, 1, 1, 4, 1, 36, 1, 64, 9, 100, 1, 20736, 1, 196, 225, 4096, 1, 104976, 1, 160000, 441, 484, 1, 191102976, 25, 676, 729, 614656, 1, 729000000, 1, 1048576, 1089, 1156, 1225, 78364164096, 1, 1444, 1521, 4096000000, 1, 5489031744, 1, 3748096, 4100625, 2116, 1, 28179280429056, 49, 6250000
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 19 2016

Keywords

Examples

			a(6) = 36 because 6 has 3 proper divisors {1,2,3} and 1^2*2^2*3^2 = 36.
		

Crossrefs

Programs

  • Maple
    seq(n^(numtheory:-tau(n)-2), n=1..50); # Robert Israel, Nov 13 2016
  • Mathematica
    Table[n^(DivisorSigma[0, n] - 2), {n, 1, 50}]

Formula

a(n) = n^(sigma_0(n)-2).
a(n) = n^A000005(n)/A000290(n).
a(n) = A000290(A007956(n))/A000290(n).
a(n) = A000290(A007955(n)/n)/A000290(n).
a(n) = A062758(n)/A000290(n).
a(n) = 1 if n is prime or n = 1 (A008578).
a(n) = n if n is square of prime (A001248).
a(n) = n^2 if n is multiplicatively perfect number (A007422).
Previous Showing 21-30 of 31 results. Next