cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 45 results. Next

A175596 Partial products of A007425.

Original entry on oeis.org

1, 3, 9, 54, 162, 1458, 4374, 43740, 262440, 2361960, 7085880, 127545840, 382637520, 3443737680, 30993639120, 464904586800, 1394713760400, 25104847687200, 75314543061600, 1355661775108800, 12200955975979200, 109808603783812800, 329425811351438400, 9882774340543152000, 59296646043258912000, 533669814389330208000, 5336698143893302080000, 96060566590079437440000, 288181699770238312320000, 7780905893796434432640000
Offset: 1

Views

Author

Jonathan Vos Post, Dec 03 2010

Keywords

Comments

Partial products of the number of ordered factorizations of n as a product of 3 terms.
a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = d_4(gcd(i,j)) for 1 <= i,j <= n, where d_4(n) = A007426(n). - Enrique Pérez Herrero, Jan 20 2013

Examples

			a(8) = 1 * 3 * 3 * 6 * 3 * 9 * 3 * 10 = 43740 = 2^2 * 3^7 * 5.
		

Crossrefs

Cf. A000005, A007425, A007426, A061201 (partial sums), A127270, A143354.
Cf. A066843.

Programs

  • Mathematica
    Table[Product[Sum[DivisorSigma[0, d], {d, Divisors[k]}], {k, 1, n}], {n, 1, 30}] (* Vaclav Kotesovec, Sep 03 2018 *)
  • PARI
    f(n) = sumdiv(n, k, numdiv(k)); \\ A007425
    a(n) = prod(k=1, n, f(k)); \\ Michel Marcus, Mar 23 2021

Formula

a(n) = Product_{i=1..n} A007425(i).
a(n) = Product_{prime p<=n} Product_{k=1..floor(log_p(n))} (1 + 2/k)^floor(n/p^k). - Ridouane Oudra, Mar 23 2021

A304964 Expansion of 1/(1 - Sum_{i>=1, j>=1, k>=1, l>=1} x^(i*j*k*l)).

Original entry on oeis.org

1, 1, 5, 13, 47, 133, 443, 1333, 4263, 13143, 41419, 128791, 403815, 1259639, 3941579, 12310299, 38492034, 120271953, 375964616, 1174935195, 3672413322, 11477465221, 35872928244, 112117013835, 350417746650, 1095202995267, 3422999582632, 10698350241417, 33437065631262, 104505382585023
Offset: 0

Views

Author

Ilya Gutkovskiy, May 22 2018

Keywords

Comments

Invert transform of A007426.

Crossrefs

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(k=1, 1,
          add(A(d, k-1), d=numtheory[divisors](n)))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(A(j, 4)*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, May 22 2018
  • Mathematica
    nmax = 29; CoefficientList[Series[1/(1 - Sum[x^(i j k l), {i, 1, nmax}, {j, 1, nmax/i}, {k, 1, nmax/i/j}, {l, 1, nmax/i/j/k}]), {x, 0, nmax}], x]
    nmax = 29; CoefficientList[Series[1/(1 - Sum[Sum[DivisorSigma[0, d] DivisorSigma[0, k/d], {d, Divisors[k]}] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[Sum[DivisorSigma[0, d] DivisorSigma[0, k/d], {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 29}]

Formula

G.f.: 1/(1 - Sum_{k>=1} A007426(k)*x^k).

A321240 Expansion of Product_{i>=1, j>=1, k>=1, l>=1} (1 + x^(i*j*k*l))/(1 - x^(i*j*k*l)).

Original entry on oeis.org

1, 2, 10, 26, 86, 210, 594, 1394, 3530, 8006, 18842, 41258, 92190, 195714, 419538, 867050, 1797568, 3625758, 7311382, 14431294, 28416514, 55010142, 106101558, 201814518, 382213566, 715473554, 1333083950, 2459265058, 4515151234, 8218572030, 14888270366, 26766878302
Offset: 0

Views

Author

Seiichi Manyama, Nov 01 2018

Keywords

Comments

Convolution of the sequences A280486 and A280487.

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(   (&*[(&*[(&*[(&*[(1+x^(i*j*k*l))/(1-x^(i*j*k*l)): i in [1..m]]): j in [1..m]]): k in [1..m]]): l in [1..m]]))); // G. C. Greubel, Nov 01 2018
  • Mathematica
    With[{nmax=50}, CoefficientList[Series[Product[(1 + x^(i*j*k*l))/(1 - x^(i*j*k*l)), {i,1,nmax}, {j,1,nmax/i}, {k,1,nmax/i/j}, {l,1,nmax/i/j/k}], {x,0,nmax}], x]] (* G. C. Greubel, Nov 01 2018 *)
  • PARI
    m=50; x='x+O('x^m); Vec(prod(k=1,m, ((1+x^k)/(1-x^k))^ sumdiv(k, d, numdiv(k/d)*numdiv(d)))) \\ G. C. Greubel, Nov 01 2018
    

Formula

G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^A007426(k).

A328486 Dirichlet g.f.: zeta(s)^4 * (1 - 2^(-s))^2.

Original entry on oeis.org

1, 2, 4, 3, 4, 8, 4, 4, 10, 8, 4, 12, 4, 8, 16, 5, 4, 20, 4, 12, 16, 8, 4, 16, 10, 8, 20, 12, 4, 32, 4, 6, 16, 8, 16, 30, 4, 8, 16, 16, 4, 32, 4, 12, 40, 8, 4, 20, 10, 20, 16, 12, 4, 40, 16, 16, 16, 8, 4, 48, 4, 8, 40, 7, 16, 32, 4, 12, 16, 32, 4, 40, 4, 8, 40, 12, 16, 32, 4, 20
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 16 2019

Keywords

Comments

Dirichlet convolution of A001227 with itself.

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; tau(2*n)-tau(n) end:
    a:= n-> add(b(d)*b(n/d), d=divisors(n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Oct 16 2019
  • Mathematica
    nmax = 80; A001227 = Table[DivisorSum[n, Mod[#, 2] &], {n, 1, nmax}]; Table[DivisorSum[n, A001227[[#]] A001227[[n/#]] &], {n, 1, nmax}]
    f[2, e_] := e + 1; f[p_, e_] := (e + 1)*(e + 2)*(e + 3)/6; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 30 2020 *)

Formula

a(n) = Sum_{d|n} A001227(d) * A001227(n/d).
Sum_{k=1..n} a(k) ~ n * (log(n)^3/24 + (g/2 + log(2)/4 - 1/8)* log(n)^2 + (1/4 - g + 3*g^2/2 - log(2)/2 + 2*g*log(2) - sg1)* log(n) - 1/4 + (1 - 2*log(2))*g + (3*log(2) - 3/2)*g^2 + g^3 + log(2)/2 - log(2)^3/6 + (1 - 3*g - 2*log(2))* sg1 + sg2/2), where g is the Euler-Mascheroni constant A001620 and sg1, sg2 are the Stieltjes constants, see A082633 and A086279. - Vaclav Kotesovec, Oct 17 2019
Multiplicative with a(2^e) = e + 1, and a(p^e) = (e + 1)*(e + 2)*(e + 3)/6 for odd primes p. - Amiram Eldar, Nov 30 2020

A334115 Numbers that can be written as a product of tetrahedral numbers.

Original entry on oeis.org

0, 1, 4, 10, 16, 20, 35, 40, 56, 64, 80, 84, 100, 120, 140, 160, 165, 200, 220, 224, 256, 286, 320, 336, 350, 364, 400, 455, 480, 560, 640, 660, 680, 700, 800, 816, 840, 880, 896, 969, 1000, 1024, 1120, 1140, 1144, 1200, 1225, 1280, 1330, 1344, 1400, 1456, 1540, 1600
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 14 2020

Keywords

Comments

For n > 1, numbers that appear at least once in A007426.

Crossrefs

Extensions

More terms from David A. Corneth, Mar 22 2021

A383658 Denominator of Dirichlet g.f.: Sum_{n>=1} a(n)/n^s = zeta(s)^(3/2).

Original entry on oeis.org

1, 2, 2, 8, 2, 4, 2, 16, 8, 4, 2, 16, 2, 4, 4, 128, 2, 16, 2, 16, 4, 4, 2, 32, 8, 4, 16, 16, 2, 8, 2, 256, 4, 4, 4, 64, 2, 4, 4, 32, 2, 8, 2, 16, 16, 4, 2, 256, 8, 16, 4, 16, 2, 32, 4, 32, 4, 4, 2, 32, 2, 4, 16, 1024, 4, 8, 2, 16, 4, 8, 2, 128, 2, 4, 16, 16, 4
Offset: 1

Views

Author

Vaclav Kotesovec, May 04 2025

Keywords

Comments

Is this a duplicate of A046644 (the first 8192 entries are the same)? - R. J. Mathar, May 06 2025

Crossrefs

Programs

  • Mathematica
    coeff=CoefficientList[Series[1/(1-x)^(3/2),{x,0,20}]//Normal,x]; dptTerm[n_]:=Module[{flist=FactorInteger[n]},If[n==1,coeff[[1]],Denominator[Times@@(coeff[[flist[[All,2]]+1]])]]];Array[dptTerm,77] (* Shenghui Yang, May 04 2025 *)
  • PARI
    for(n=1, 100, print1(denominator(direuler(p=2, n, 1/(1-X)^(3/2))[n]), ", "))

Formula

Sum_{k=1..n} A383657(k)/A383658(k) ~ 2*n*sqrt(log(n)/Pi) * (1 - (1 - 3*gamma/2)/(2*log(n))), where gamma is the Euler-Mascheroni constant A001620.

A098052 T(n,k) counts the solid partitions of n that can be extended to a solid partition of n+1 in exactly (k+3) ways. Equivalently, the number of solid partitions of n that have exactly k+3 partitions of n+1 majoring them.

Original entry on oeis.org

1, 4, 4, 6, 10, 12, 0, 4, 4, 30, 12, 12, 0, 0, 1, 16, 48, 18, 48, 0, 6, 4, 4, 70, 72, 100, 27, 12, 22, 20, 102, 114, 232, 76, 66, 68, 6, 10, 114, 231, 448, 232, 180, 201, 48, 16, 204, 330, 728, 628, 462, 546, 184, 24
Offset: 4

Views

Author

Wouter Meeussen, Sep 11 2004

Keywords

Comments

Row sums are A000293 (solid partitions) by definition.
First column is conjectured to be A007426 = tau_4(n).
All solid partitions can be extended in at least 4 ways (hence the offset 4).

Examples

			T(5,7)=1 because there is only 1 solid partition of 5 [{{2, 1}, {1}}, {{1}}] that can be extended to a solid partition of 6 in exactly (7+3 =10) ways:
  [{{2,1},{2}},{{1}}], [{{2,1},{1,1}},{{1}}], [{{2,2},{1}},{{1}}],
  [{{3,1},{1}},{{1}}], [{{2,1,1},{1}},{{1}}], [{{2,1},{1},{1}},{{1}}],
  [{{2,1},{1}},{{2}}], [{{2,1},{1}},{{1,1}}], [{{2,1},{1}},{{1},{1}}],
  [{{2,1},{1}},{{1}},{{1}}].
Table starts
  1;
  4;
  4,6;
  10,12,0,4;
  4,30,12,12,0,0,1;
  16,48,18,48,0,6,4;
  4,70,72,100,27,12,22;
  20,102,114,232,76,66,68,6;
  ...
		

Crossrefs

Programs

  • Mathematica
    (* functions 'solidform' and 'coversplaneQ', see A096574 *)
    Table[ Rest@BinCounts[Count[Flatten[solidformBTK/@IntegerPartitions[n+1]],q_/;coverssolidQ[q,#]]&/@Flatten[solidformBTK/@IntegerPartitions[n]]] ,{n,1,8}] (* Wouter Meeussen, Feb 03 2025 *)

A318966 Expansion of e.g.f. Product_{i>=1, j>=1, k>=1} 1/(1 - x^(i*j*k))^(1/(i*j*k)).

Original entry on oeis.org

1, 1, 5, 21, 165, 1077, 11457, 103905, 1345257, 15834825, 237535389, 3372509709, 59235634125, 979573962429, 19224990899865, 366788042231193, 8019002662543953, 171360055378885905, 4132946756763614133, 97947895990285022085, 2576516749059849502581, 67124117357620005459141
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 06 2018

Keywords

Crossrefs

Programs

  • Maple
    a:=series(mul(mul(mul(1/(1-x^(i*j*k))^(1/(i*j*k)),k=1..21),j=1..50),i=1..50),x=0,22): seq(n!*coeff(a,x,n),n=0..21); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 21; CoefficientList[Series[Product[Product[Product[1/(1 - x^(i j k))^(1/(i j k)), {i, 1, nmax}], {j, 1, nmax}], {k, 1, nmax} ], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 21; CoefficientList[Series[Product[1/(1 - x^k)^(Sum[DivisorSigma[0, d], {d, Divisors[k]}]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = (n - 1)! Sum[Sum[Sum[DivisorSigma[0, j], {j, Divisors[d]}], {d, Divisors[k]}] a[n - k]/(n - k)!, {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 21}]

Formula

E.g.f.: Product_{k>=1} 1/(1 - x^k)^(tau_3(k)/k), where tau_3 = A007425.
E.g.f.: exp(Sum_{k>=1} ( Sum_{d|k} Sum_{j|d} tau(j) ) * x^k/k), where tau = number of divisors (A000005).

A321302 Expansion of Product_{i>=1, j>=1, k>=1, l>=1} (1 - x^(i*j*k*l))/(1 + x^(i*j*k*l)).

Original entry on oeis.org

1, -2, -6, 6, 14, 30, -14, -98, -86, -150, 282, 486, 502, 670, -1118, -1226, -4396, -3814, 1326, 3834, 20354, 16330, 18334, -6606, -45658, -60762, -121770, -60122, -22750, 160314, 303638, 435450, 542336, 162782, -45830, -1090994, -1576378, -2608146, -2408142, -988202, 479834
Offset: 0

Views

Author

Seiichi Manyama, Nov 03 2018

Keywords

Crossrefs

Convolution inverse of A321240.

Programs

  • PARI
    \\ here b(n) is A007426.
    b(n)={vecprod(apply(e->binomial(e+3, 3), factor(n)[,2]))}
    seq(n)={Vec(prod(k=1, n, ((1 - x^k)/(1 + x^k) + O(x*x^n))^b(k)))} \\ Andrew Howroyd, Nov 06 2018

Formula

G.f.: Product_{k>=1} ((1 - x^k)/(1 + x^k))^A007426(k).

A326417 Dirichlet g.f.: zeta(s)^4 * (1 - 2^(-s)).

Original entry on oeis.org

1, 3, 4, 6, 4, 12, 4, 10, 10, 12, 4, 24, 4, 12, 16, 15, 4, 30, 4, 24, 16, 12, 4, 40, 10, 12, 20, 24, 4, 48, 4, 21, 16, 12, 16, 60, 4, 12, 16, 40, 4, 48, 4, 24, 40, 12, 4, 60, 10, 30, 16, 24, 4, 60, 16, 40, 16, 12, 4, 96, 4, 12, 40, 28, 16, 48, 4, 24, 16, 48, 4, 100, 4, 12, 40
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 18 2019

Keywords

Comments

Inverse Moebius transform applied twice to A001227.

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[0, n/d] Total[Mod[Divisors[d], 2]], {d, Divisors[n]}], {n, 1, 75}]
    nmax = 75; A007425 = Table[DivisorSum[n, DivisorSigma[0, #] &], {n, 1, nmax}]; Table[DivisorSum[n, A007425[[#]] &, OddQ[n/#] &], {n, 1, nmax}]
    f[2, e_] := (e + 1)*(e + 2)/2; f[p_, e_] := (e + 1)*(e + 2)*(e + 3)/6; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 02 2020 *)

Formula

G.f.: Sum_{k>=1} tau_3(k) * x^k / (1 - x^(2*k)), where tau_3 = A007425.
a(n) = tau_4(n) if n odd, tau_4(n) - tau_4(n/2) if n even, where tau_4 = A007426.
a(n) = Sum_{d|n, n/d odd} tau_3(d).
a(n) = Sum_{d|n} A000005(n/d) * A001227(d).
Product_{n>=1} 1 / (1 - x^n)^a(n) = g.f. for A280486.
Multiplicative with a(2^e) = (e+1)*(e+2)/2, and a(p^e) = (e+1)*(e+2)*(e+3)/6 for odd primes p. - Amiram Eldar, Dec 02 2020
Previous Showing 31-40 of 45 results. Next