A366135
Expansion of Sum_{k>=1} k^3 * x^k/(1 - x^k)^3.
Original entry on oeis.org
1, 11, 33, 98, 140, 366, 371, 820, 936, 1550, 1397, 3276, 2288, 4102, 4650, 6696, 5066, 10413, 7049, 13860, 12306, 15422, 12443, 27480, 17825, 25246, 25650, 36652, 24824, 51900, 30287, 54096, 46266, 55862, 52150, 93366, 51356, 77710, 75738, 116200, 69782, 137172
Offset: 1
-
a[n_] := (n * DivisorSigma[1, n] + DivisorSigma[2, n]) * n/2; Array[a, 50] (* Amiram Eldar, Dec 15 2023 *)
-
a(n) = n*(n*sigma(n)+sigma(n, 2))/2;
A278947
Expansion of Sum_{k>=1} (k*(5*k - 3)/2)*x^k/(1 - x^k).
Original entry on oeis.org
0, 1, 8, 19, 42, 56, 107, 113, 190, 208, 298, 287, 483, 404, 589, 614, 806, 698, 1079, 875, 1302, 1202, 1471, 1289, 2035, 1581, 2062, 1990, 2541, 2060, 3142, 2357, 3318, 2978, 3544, 3178, 4641, 3368, 4435, 4166, 5390, 4142, 6106, 4559, 6279, 5798, 6517, 5453, 8339, 6042, 7998, 7142, 8778, 6944, 10070, 7822, 10445, 8930, 10390
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Mira Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- Mira Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms.
- Eric Weisstein's World of Mathematics, Heptagonal Number.
- Index to sequences related to polygonal numbers.
-
nmax=58; CoefficientList[Series[Sum[(k (5 k - 3)/2) x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Flatten[{0, Table[(5*DivisorSigma[2, n] - 3*DivisorSigma[1, n])/2, {n, 1, 100}]}] (* Vaclav Kotesovec, Dec 05 2016 *)
-
a(n) = if(n == 0, 0, my(f = factor(n)); (5 * sigma(f, 2) - 3 * sigma(f)) / 2); \\ Amiram Eldar, Dec 29 2024
A320941
Expansion of Sum_{k>=1} x^k*(1 + x^k)/(1 - x^k)^4.
Original entry on oeis.org
1, 6, 15, 36, 56, 111, 141, 240, 300, 446, 507, 791, 820, 1161, 1310, 1736, 1786, 2505, 2471, 3346, 3466, 4307, 4325, 5895, 5581, 7026, 7230, 8905, 8556, 11246, 10417, 13176, 13050, 15476, 15106, 19391, 17576, 21495, 21374, 25690, 23822, 30162, 27435, 33707, 32990, 37841, 35721
Offset: 1
-
a:=series(add(x^k*(1+x^k)/(1-x^k)^4,k=1..100),x=0,48): seq(coeff(a,x,n),n=1..47); # Paolo P. Lava, Apr 02 2019
-
nmax = 47; Rest[CoefficientList[Series[Sum[x^k (1 + x^k)/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]]
Table[Sum[d (d + 1) (2 d + 1)/6, {d, Divisors[n]}], {n, 47}]
Table[(DivisorSigma[1, n] + 3 DivisorSigma[2, n] + 2 DivisorSigma[3, n])/6, {n, 47}]
-
a(n) = my(f = factor(n)); (2*sigma(f, 3) + 3*sigma(f, 2) + sigma(f, 1)) / 6; \\ Amiram Eldar, Jan 03 2025
A116989
a(n) = b(A000579(n+6)) with b(n) = Sum{d|n} d*(d+1)*(d+2)*(d+3)*(d+4)*(d+5)/720.
Original entry on oeis.org
1, 925, 1135716, 593223373, 130220375812, 14195655302684, 893936543319276, 36397263567477054, 1025115791220794876, 21899052879460199956, 372805053916689840596, 5076066733212581886566, 57875038239259949679248
Offset: 0
-
a(n) = sumdiv(binomial(n+6, 6), d, d*(d+1)*(d+2)*(d+3)*(d+4)*(d+5)/720) /* Georg Fischer, Aug 03 2025 */
Original entry on oeis.org
1, 2, 2, 2, 2, 3, 3, 4, 3, 4, 2, 2, 3, 4, 5, 4, 6, 6, 4, 5, 6, 2, 2, 3, 4, 5, 6, 7, 4, 6, 6, 8, 5, 6, 7, 8, 3, 4, 6, 4, 5, 6, 7, 8, 9, 4, 6, 6, 8, 10, 6, 7, 8, 9, 10
Offset: 1
First few rows of the triangle:
1;
2, 2;
2, 2, 3;
3, 4, 3, 4;
2, 2, 3, 4, 5;
4, 6, 6, 4, 5, 6;
2, 2, 3, 4, 5, 6, 7;
4, 6, 6, 8, 5, 6, 7, 8;
3, 4, 6, 4, 5, 6, 7, 8, 9;
4, 6, 6, 8, 10, 6, 7, 8, 9, 10;
...
Original entry on oeis.org
1, 3, 1, 4, 2, 1, 7, 4, 2, 1, 6, 4, 3, 2, 1, 12, 8, 5, 3, 2, 1, 8, 6, 5, 4, 3, 2, 1, 15, 11, 8, 6, 4, 3, 2, 1, 13, 10, 8, 6, 5, 4, 3, 2, 1, 18, 14, 11, 9, 7, 5, 4, 3, 2, 1
Offset: 1
First few rows of the triangle:
1;
3, 1;
4, 2, 1;
7, 4, 2, 1;
6, 4, 3, 2, 1;
12, 8, 5, 3, 2, 1;
8, 6, 5, 4, 3, 2, 1;
15, 11, 8, 6, 4, 3, 2, 1;
...
A134839
Triangle, n-th row = first n terms in n-th row of an array formed by A051731 * A126988(transform).
Original entry on oeis.org
1, 1, 3, 1, 2, 4, 1, 3, 3, 7, 1, 2, 3, 4, 6, 1, 3, 4, 6, 5, 12, 1, 2, 3, 4, 5, 6, 8, 1, 3, 3, 7, 5, 9, 7, 15, 1, 2, 4, 4, 5, 8, 7, 8, 13, 1, 3, 3, 6, 6, 9, 7, 12, 9, 18
Offset: 1
First few rows of the array:
1, 2, 3, 4, 5, 6, 7, ...
1, 3, 3, 6, 5, 9, 7, ...
1, 2, 4, 4, 5, 8, 7, ...
1, 3, 3, 7, 5, 9, 7, ...
1, 2, 3, 4, 6, 6, 7, ...
1, 3, 4, 6, 5, 12, 7, ...
...
First few rows of the triangle:
1;
1, 3;
1, 2, 4;
1, 3, 3, 7;
1, 2, 3, 4, 6;
1, 3, 4, 6, 5, 12;
1, 2, 3, 4, 5, 6, 8;
...
A275786
a(n) = Product_{d|n} T(d) where T(x) = x*(x+1)/2 = A000217(x) = x-th triangular number.
Original entry on oeis.org
1, 3, 6, 30, 15, 378, 28, 1080, 270, 2475, 66, 294840, 91, 8820, 10800, 146880, 153, 2908710, 190, 5197500, 38808, 50094, 276, 3184272000, 4875, 95823, 102060, 35809200, 435, 17401230000, 496, 77552640, 222156, 273105, 264600, 1511016670800, 703, 422370, 425880
Offset: 1
a(4) = 30 because the divisors of 4 are: 1, 2 and 4; and T(1)*T(2)*T(4) = 1*3*10 = 30.
-
[(&*[d*(d+1) div 2: d in Divisors(n)]): n in [1..100]]
-
f:= n -> convert(map(t -> t*(t+1)/2,numtheory:-divisors(n)),`*`):
map(f, [$1..100]); # Robert Israel, Aug 09 2016
-
t[n_]:=Divisors[n]*(Divisors[n]+1)/2;a[n_]:=Times@@t[n];Array[a,50] (* Ivan N. Ianakiev, Aug 15 2016 *)
A309730
Expansion of Sum_{k>=1} x^k * (1 - x^(3*k))/(1 - x^k)^4.
Original entry on oeis.org
1, 5, 11, 24, 32, 61, 65, 109, 120, 172, 167, 279, 236, 343, 358, 470, 410, 630, 515, 762, 706, 865, 761, 1193, 933, 1216, 1174, 1497, 1220, 1850, 1397, 1959, 1762, 2098, 1882, 2739, 2000, 2629, 2470, 3188, 2462, 3614, 2711, 3723, 3438, 3871, 3245, 4939, 3594, 4749, 4246, 5214
Offset: 1
-
nmax = 52; CoefficientList[Series[Sum[x^k (1 - x^(3 k))/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Table[3 (DivisorSigma[2, n] - DivisorSigma[1, n])/2 + DivisorSigma[0, n], {n, 1, 52}]
-
a(n)={sumdiv(n, d, 3*d*(d-1)/2 + 1)} \\ Andrew Howroyd, Aug 14 2019
-
a(n)={3*(sigma(n,2) - sigma(n))/2 + numdiv(n)} \\ Andrew Howroyd, Aug 14 2019
A326826
a(n) = (1/2) * Sum_{d|n} (sigma_1(d) + sigma_2(d)), where sigma_1 = A000203 and sigma_2 = A001157.
Original entry on oeis.org
1, 5, 8, 19, 17, 43, 30, 69, 60, 95, 68, 176, 93, 171, 166, 255, 155, 342, 192, 403, 303, 395, 278, 681, 358, 543, 490, 738, 437, 961, 498, 969, 709, 911, 720, 1476, 705, 1131, 978, 1603, 863, 1773, 948, 1732, 1440, 1643, 1130, 2634, 1284, 2110, 1648, 2391, 1433, 2882, 1706
Offset: 1
-
[(1/2)*&+[DivisorSigma(1,d)+DivisorSigma(2,d):d in Divisors(n)]:n in [1..55]]; // Marius A. Burtea, Oct 20 2019
-
with(numtheory):
a:= n-> add(d*(d+1)*tau(n/d), d=divisors(n))/2:
seq(a(n), n=1..60); # Alois P. Heinz, Oct 20 2019
-
Table[1/2 Sum[DivisorSigma[1, d] + DivisorSigma[2, d], {d, Divisors[n]}], {n, 1, 55}]
Table[1/2 Sum[d (d + 1) DivisorSigma[0, n/d], {d, Divisors[n]}], {n, 1, 55}]
nmax = 55; CoefficientList[Series[Sum[Sum[x^(i j)/(1 - x^(i j))^3, {j, 1, nmax}], {i, 1, nmax}], {x, 0, nmax}], x] // Rest
-
a(n) = sumdiv(n, d, sigma(d)+sigma(d, 2))/2; \\ Michel Marcus, Oct 20 2019
Comments