cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A366135 Expansion of Sum_{k>=1} k^3 * x^k/(1 - x^k)^3.

Original entry on oeis.org

1, 11, 33, 98, 140, 366, 371, 820, 936, 1550, 1397, 3276, 2288, 4102, 4650, 6696, 5066, 10413, 7049, 13860, 12306, 15422, 12443, 27480, 17825, 25246, 25650, 36652, 24824, 51900, 30287, 54096, 46266, 55862, 52150, 93366, 51356, 77710, 75738, 116200, 69782, 137172
Offset: 1

Views

Author

Seiichi Manyama, Oct 28 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (n * DivisorSigma[1, n] + DivisorSigma[2, n]) * n/2; Array[a, 50] (* Amiram Eldar, Dec 15 2023 *)
  • PARI
    a(n) = n*(n*sigma(n)+sigma(n, 2))/2;

Formula

a(n) = n * (n * sigma(n) + sigma_2(n))/2.
a(n) = Sum_{d|n} d^3 * binomial(n/d+1,2).
a(n) = Sum_{k=1..n} k*sigma_2(gcd(n,k)).
Sum_{k=1..n} a(k) ~ (Pi^2/48 + zeta(3)/8) * n^4. - Amiram Eldar, Dec 15 2023

A278947 Expansion of Sum_{k>=1} (k*(5*k - 3)/2)*x^k/(1 - x^k).

Original entry on oeis.org

0, 1, 8, 19, 42, 56, 107, 113, 190, 208, 298, 287, 483, 404, 589, 614, 806, 698, 1079, 875, 1302, 1202, 1471, 1289, 2035, 1581, 2062, 1990, 2541, 2060, 3142, 2357, 3318, 2978, 3544, 3178, 4641, 3368, 4435, 4166, 5390, 4142, 6106, 4559, 6279, 5798, 6517, 5453, 8339, 6042, 7998, 7142, 8778, 6944, 10070, 7822, 10445, 8930, 10390
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 02 2016

Keywords

Comments

Inverse Moebius transform of heptagonal numbers (A000566).

Crossrefs

Cf. A000203, A000566 (heptagonal numbers), A002117, A059358.
Inverse Moebius transforms of polygonal numbers: A007437 (k=3), A001157 (k=4), A116913 (k=5), A278945 (k=6), this sequence (k=7).

Programs

  • Mathematica
    nmax=58; CoefficientList[Series[Sum[(k (5 k - 3)/2) x^k/(1 - x^k),  {k, 1, nmax}], {x, 0, nmax}], x]
    Flatten[{0, Table[(5*DivisorSigma[2, n] - 3*DivisorSigma[1, n])/2, {n, 1, 100}]}] (* Vaclav Kotesovec, Dec 05 2016 *)
  • PARI
    a(n) = if(n == 0, 0, my(f = factor(n)); (5 * sigma(f, 2) - 3 * sigma(f)) / 2); \\ Amiram Eldar, Dec 29 2024

Formula

G.f.: Sum_{k>=1} (k*(5*k - 3)/2)*x^k/(1 - x^k).
Dirichlet g.f.: (5*zeta(s-2) - 3*zeta(s-1))*zeta(s)/2.
a(n) = Sum_{d|n} d*(5*d - 3)/2.
a(n) = (5*A001157(n) - 3*A000203(n))/2.
Sum_{k=1..n} a(k) ~ (5*zeta(3)/6) * n^3. - Amiram Eldar, Dec 29 2024

A320941 Expansion of Sum_{k>=1} x^k*(1 + x^k)/(1 - x^k)^4.

Original entry on oeis.org

1, 6, 15, 36, 56, 111, 141, 240, 300, 446, 507, 791, 820, 1161, 1310, 1736, 1786, 2505, 2471, 3346, 3466, 4307, 4325, 5895, 5581, 7026, 7230, 8905, 8556, 11246, 10417, 13176, 13050, 15476, 15106, 19391, 17576, 21495, 21374, 25690, 23822, 30162, 27435, 33707, 32990, 37841, 35721
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 24 2018

Keywords

Comments

Inverse Möbius transform of square pyramidal numbers (A000330).

Crossrefs

Programs

  • Maple
    a:=series(add(x^k*(1+x^k)/(1-x^k)^4,k=1..100),x=0,48): seq(coeff(a,x,n),n=1..47); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 47; Rest[CoefficientList[Series[Sum[x^k (1 + x^k)/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Sum[d (d + 1) (2 d + 1)/6, {d, Divisors[n]}], {n, 47}]
    Table[(DivisorSigma[1, n] + 3 DivisorSigma[2, n] + 2 DivisorSigma[3, n])/6, {n, 47}]
  • PARI
    a(n) = my(f = factor(n)); (2*sigma(f, 3) + 3*sigma(f, 2) + sigma(f, 1)) / 6; \\ Amiram Eldar, Jan 03 2025

Formula

G.f.: Sum_{k>=1} A000330(k)*x^k/(1 - x^k).
a(n) = Sum_{d|n} d*(d + 1)*(2*d + 1)/6.
a(n) = (A000203(n) + 3*A001157(n) + 2*A001158(n))/6.
a(n) = Sum_{i=1..n} i^2*A135539(n,i). - Ridouane Oudra, Jul 22 2022
From Amiram Eldar, Jan 03 2025: (Start)
Dirichlet g.f.: zeta(s) * (2*zeta(s-3) + 3*zeta(s-2) + zeta(s-1)) / 6.
Sum_{k=1..n} a(k) ~ (zeta(4)/12) * n^4. (End)

A116989 a(n) = b(A000579(n+6)) with b(n) = Sum{d|n} d*(d+1)*(d+2)*(d+3)*(d+4)*(d+5)/720.

Original entry on oeis.org

1, 925, 1135716, 593223373, 130220375812, 14195655302684, 893936543319276, 36397263567477054, 1025115791220794876, 21899052879460199956, 372805053916689840596, 5076066733212581886566, 57875038239259949679248
Offset: 0

Views

Author

Jonathan Vos Post, Apr 02 2006

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(binomial(n+6, 6), d, d*(d+1)*(d+2)*(d+3)*(d+4)*(d+5)/720) /* Georg Fischer, Aug 03 2025 */

Extensions

Definition corrected by Georg Fischer, Aug 03 2025

A134544 A051731 * A002260.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 3, 4, 3, 4, 2, 2, 3, 4, 5, 4, 6, 6, 4, 5, 6, 2, 2, 3, 4, 5, 6, 7, 4, 6, 6, 8, 5, 6, 7, 8, 3, 4, 6, 4, 5, 6, 7, 8, 9, 4, 6, 6, 8, 10, 6, 7, 8, 9, 10
Offset: 1

Views

Author

Gary W. Adamson, Oct 31 2007

Keywords

Comments

Row sums = A007437: (1, 4, 7, 14, 16, 3, 29, 50, ...).
Left border = A000010.

Examples

			First few rows of the triangle:
  1;
  2,  2;
  2,  2,  3;
  3,  4,  3,  4;
  2,  2,  3,  4,  5;
  4,  6,  6,  4,  5,  6;
  2,  2,  3,  4,  5,  6,  7;
  4,  6,  6,  8,  5,  6,  7,  8;
  3,  4,  6,  4,  5,  6,  7,  8,  9;
  4,  6,  6,  8, 10,  6,  7,  8,  9, 10;
  ...
		

Crossrefs

Formula

A051731 * A002260 as infinite lower triangular matrices.

A134545 A051731 * A004736.

Original entry on oeis.org

1, 3, 1, 4, 2, 1, 7, 4, 2, 1, 6, 4, 3, 2, 1, 12, 8, 5, 3, 2, 1, 8, 6, 5, 4, 3, 2, 1, 15, 11, 8, 6, 4, 3, 2, 1, 13, 10, 8, 6, 5, 4, 3, 2, 1, 18, 14, 11, 9, 7, 5, 4, 3, 2, 1
Offset: 1

Views

Author

Gary W. Adamson, Oct 31 2007

Keywords

Comments

Row sums = A007437: (1, 4, 7, 14, 16, 31, ...).
Left border = sigma(n), A000203: (1, 3, 4, 7, 6, 12, ...).

Examples

			First few rows of the triangle:
   1;
   3,  1;
   4,  2, 1;
   7,  4, 2, 1;
   6,  4, 3, 2, 1;
  12,  8, 5, 3, 2, 1;
   8,  6, 5, 4, 3, 2, 1;
  15, 11, 8, 6, 4, 3, 2, 1;
  ...
		

Crossrefs

Formula

A051731 * A004736 as infinite lower triangular matrices.

A134839 Triangle, n-th row = first n terms in n-th row of an array formed by A051731 * A126988(transform).

Original entry on oeis.org

1, 1, 3, 1, 2, 4, 1, 3, 3, 7, 1, 2, 3, 4, 6, 1, 3, 4, 6, 5, 12, 1, 2, 3, 4, 5, 6, 8, 1, 3, 3, 7, 5, 9, 7, 15, 1, 2, 4, 4, 5, 8, 7, 8, 13, 1, 3, 3, 6, 6, 9, 7, 12, 9, 18
Offset: 1

Views

Author

Gary W. Adamson, Nov 12 2007

Keywords

Comments

Right border = sigma(n), A000203: (1, 3, 4, 7, 6, 12, ...).
Row sums = A007437: (1, 4, 7, 14, 16, 31, 29, 50, ...).

Examples

			First few rows of the array:
  1,  2,  3,  4,  5,  6,  7, ...
  1,  3,  3,  6,  5,  9,  7, ...
  1,  2,  4,  4,  5,  8,  7, ...
  1,  3,  3,  7,  5,  9,  7, ...
  1,  2,  3,  4,  6,  6,  7, ...
  1,  3,  4,  6,  5, 12,  7, ...
  ...
First few rows of the triangle:
  1;
  1,  3;
  1,  2,  4;
  1,  3,  3,  7;
  1,  2,  3,  4,  6;
  1,  3,  4,  6,  5, 12;
  1,  2,  3,  4,  5,  6,  8;
  ...
		

Crossrefs

Formula

Given the array formed by A051731 * A126988(transform), the triangle by rows = first n terms of n-th row of the array.

A275786 a(n) = Product_{d|n} T(d) where T(x) = x*(x+1)/2 = A000217(x) = x-th triangular number.

Original entry on oeis.org

1, 3, 6, 30, 15, 378, 28, 1080, 270, 2475, 66, 294840, 91, 8820, 10800, 146880, 153, 2908710, 190, 5197500, 38808, 50094, 276, 3184272000, 4875, 95823, 102060, 35809200, 435, 17401230000, 496, 77552640, 222156, 273105, 264600, 1511016670800, 703, 422370, 425880
Offset: 1

Views

Author

Jaroslav Krizek, Aug 09 2016

Keywords

Comments

Conjecture: the sequence is injective (all terms of this sequence occur only once).

Examples

			a(4) = 30 because the divisors of 4 are: 1, 2 and 4; and T(1)*T(2)*T(4) = 1*3*10 = 30.
		

Crossrefs

Cf. A000217, A007437 (Sum_{d|n} T(d)).

Programs

  • Magma
    [(&*[d*(d+1) div 2: d in Divisors(n)]): n in [1..100]]
  • Maple
    f:= n -> convert(map(t -> t*(t+1)/2,numtheory:-divisors(n)),`*`):
    map(f, [$1..100]); # Robert Israel, Aug 09 2016
  • Mathematica
    t[n_]:=Divisors[n]*(Divisors[n]+1)/2;a[n_]:=Times@@t[n];Array[a,50] (* Ivan N. Ianakiev, Aug 15 2016 *)

Formula

a(p) = A000217(p) = p*(p+1)/2 for a prime p.

A309730 Expansion of Sum_{k>=1} x^k * (1 - x^(3*k))/(1 - x^k)^4.

Original entry on oeis.org

1, 5, 11, 24, 32, 61, 65, 109, 120, 172, 167, 279, 236, 343, 358, 470, 410, 630, 515, 762, 706, 865, 761, 1193, 933, 1216, 1174, 1497, 1220, 1850, 1397, 1959, 1762, 2098, 1882, 2739, 2000, 2629, 2470, 3188, 2462, 3614, 2711, 3723, 3438, 3871, 3245, 4939, 3594, 4749, 4246, 5214
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 14 2019

Keywords

Comments

Inverse Moebius transform of centered triangular numbers (A005448).

Crossrefs

Programs

  • Mathematica
    nmax = 52; CoefficientList[Series[Sum[x^k (1 - x^(3 k))/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[3 (DivisorSigma[2, n] - DivisorSigma[1, n])/2 + DivisorSigma[0, n], {n, 1, 52}]
  • PARI
    a(n)={sumdiv(n, d, 3*d*(d-1)/2 + 1)} \\ Andrew Howroyd, Aug 14 2019
    
  • PARI
    a(n)={3*(sigma(n,2) - sigma(n))/2 + numdiv(n)} \\ Andrew Howroyd, Aug 14 2019

Formula

G.f.: Sum_{k>=1} (3*k*(k - 1)/2 + 1) * x^k/(1 - x^k).
a(n) = 3 * (sigma_2(n) - sigma_1(n))/2 + d(n).
From Amiram Eldar, Jan 02 2025: (Start)
Dirichlet g.f.: zeta(s) * (3 * zeta(s-2) - 3 * zeta(s-1) + 2 * zeta(s)) / 2.
Sum_{k=1..n} a(k) ~ (zeta(3)/2) * n^3. (End)

A326826 a(n) = (1/2) * Sum_{d|n} (sigma_1(d) + sigma_2(d)), where sigma_1 = A000203 and sigma_2 = A001157.

Original entry on oeis.org

1, 5, 8, 19, 17, 43, 30, 69, 60, 95, 68, 176, 93, 171, 166, 255, 155, 342, 192, 403, 303, 395, 278, 681, 358, 543, 490, 738, 437, 961, 498, 969, 709, 911, 720, 1476, 705, 1131, 978, 1603, 863, 1773, 948, 1732, 1440, 1643, 1130, 2634, 1284, 2110, 1648, 2391, 1433, 2882, 1706
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 20 2019

Keywords

Comments

Inverse Moebius transform applied twice to triangular numbers (A000217).

Crossrefs

Programs

  • Magma
    [(1/2)*&+[DivisorSigma(1,d)+DivisorSigma(2,d):d in Divisors(n)]:n in [1..55]]; // Marius A. Burtea, Oct 20 2019
  • Maple
    with(numtheory):
    a:= n-> add(d*(d+1)*tau(n/d), d=divisors(n))/2:
    seq(a(n), n=1..60);  # Alois P. Heinz, Oct 20 2019
  • Mathematica
    Table[1/2 Sum[DivisorSigma[1, d] + DivisorSigma[2, d], {d, Divisors[n]}], {n, 1, 55}]
    Table[1/2 Sum[d (d + 1) DivisorSigma[0, n/d], {d, Divisors[n]}], {n, 1, 55}]
    nmax = 55; CoefficientList[Series[Sum[Sum[x^(i j)/(1 - x^(i j))^3, {j, 1, nmax}], {i, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, sigma(d)+sigma(d, 2))/2; \\ Michel Marcus, Oct 20 2019
    

Formula

G.f.: Sum_{i>=1} Sum_{j>=1} x^(i*j) / (1 - x^(i*j))^3.
G.f.: (1/2) * Sum_{i>=1} Sum_{j>=1} j * (j + 1) * x^(i*j) / (1 - x^(i*j)).
G.f.: (1/2) * Sum_{k>=1} (sigma_1(k) + sigma_2(k)) * x^k / (1 - x^k).
Dirichlet g.f.: zeta(s)^2 * (zeta(s-1) + zeta(s-2)) / 2.
a(n) = (1/2) * Sum_{d|n} d * (d + 1) * tau(n/d), where tau = A000005.
a(n) = Sum_{d|n} A007437(d).
Sum_{k=1..n} a(k) ~ zeta(3)^2 * n^3 / 6. - Vaclav Kotesovec, Dec 11 2021
Previous Showing 21-30 of 32 results. Next