cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 49 results. Next

A180142 Eight rooks and one berserker on a 3 X 3 chessboard. G.f.: (1 + x - x^2)/(1 - 3*x - 3*x^2).

Original entry on oeis.org

1, 4, 14, 54, 204, 774, 2934, 11124, 42174, 159894, 606204, 2298294, 8713494, 33035364, 125246574, 474845814, 1800277164, 6825368934, 25876938294, 98106921684, 371951579934, 1410175504854, 5346381254364, 20269670277654, 76848154596054, 291353474621124
Offset: 0

Views

Author

Johannes W. Meijer, Aug 13 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in a given side square (m = 2, 4, 6 or 8) on a 3 X 3 chessboard. This fairy chess piece behaves like a rook on the eight side and corner squares but on the central square the rook goes berserk and turns into a berserker, see A180140.
The sequence above corresponds to 16 A[5] vectors with decimal values between 3 and 384. These vectors lead for the corner squares to A123620 and for the central square to A155116.
This sequence appears among the members of a family of sequences with g.f. (1 + x - k*x^2)/(1 - 3*x + (k-4)*x^2). Berserker sequences that are members of this family are 4*A007482 (k=2; with leading 1 added), A180142 (k=1; this sequence), A000302 (k=0), A180140 (k=-1) and 4*A154964 (k=-2; n>=1 and a(0)=1). Some other members of this family are 2*A180148 (k=3; with leading 1 added), 4*A025192 (k=4; with leading 1 added), 2*A005248 (k=5; with leading 1 added) and A123932 (k=6).

Crossrefs

Cf. A180141 (corner squares), A180140 (side squares), A180147 (central square).

Programs

  • Maple
    with(LinearAlgebra): nmax:=23; m:=2; A[5]:=[0,0,0,0,0,0,0,1,1]: A:= Matrix([[0,1,1,1,0,0,1,0,0], [1,0,1,0,1,0,0,1,0], [1,1,0,0,0,1,0,0,1], [1,0,0,0,1,1,1,0,0], A[5], [0,0,1,1,1,0,0,0,1], [1,0,0,1,0,0,0,1,1], [0,1,0,0,1,0,1,0,1], [0,0,1,0,0,1,1,1,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
    # second Maple program:
    a:= n-> ceil((<<0|1>, <3|3>>^n. <<2/3, 4>>)[1,1]):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jul 14 2021
  • Mathematica
    LinearRecurrence[{3, 3}, {1, 4, 14}, 26] (* Jean-François Alcover, Jan 18 2025 *)

Formula

G.f.: (1 + x - x^2)/(1 - 3*x - 3*x^2).
a(n) = 3*a(n-1) + 3*a(n-2) for n >= 2 with a(0)=1, a(1)=4 and a(2)=14.
a(n) = (6-2*A)*A^(-n-1)/21 + (6-2*B)*B^(-n-1)/21 with A=(-3+sqrt(21))/6 and B=(-3-sqrt(21))/6.
Lim_{k->infinity} a(2*n+k)/a(k) = 2*A000244(n)/(A003501(n) - A004254(n)*sqrt(21)) for n >= 1.
Lim_{k->infinity} a(2*n-1+k)/a(k) = 2*A000244(n)/(A004253(n)*sqrt(21) - 3*A030221(n-1)) for n >= 1.

A007455 Number of subsequences of [ 1,...,n ] in which each odd number has an even neighbor.

Original entry on oeis.org

1, 1, 3, 5, 11, 17, 39, 61, 139, 217, 495, 773, 1763, 2753, 6279, 9805, 22363, 34921, 79647, 124373, 283667, 442961, 1010295, 1577629, 3598219, 5618809, 12815247, 20011685, 45642179, 71272673, 162557031, 253841389, 578955451, 904069513
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a007455_list = 1 : 1 : 3 : 5 : zipWith (+)
       (map (* 2) a007455_list) (map (* 3) $ drop 2 a007455_list)
    a007455 n = a007455_list !! n
    -- Reinhard Zumkeller, Jul 16 2012
    
  • Mathematica
    CoefficientList[Series[(-1-x-2 x^3)/(-1+3 x^2+2 x^4),{x,0,40}],x]  (* Harvey P. Dale, Feb 18 2011 *)
    LinearRecurrence[{0,3,0,2},{1,1,3,5},40] (* Harvey P. Dale, Feb 10 2015 *)
  • PARI
    A007455(n)=[n%2*2+3,1]*([3,1;2,0]^(n\2-1))[,1] \\ M. F. Hasler, Jun 19 2019

Formula

a(n) = 3*a(n-2) + 2*a(n-4).
G.f. = (1 + x + 2 x^3)/(1 - 3 x^2 - 2 x^4). - Harvey P. Dale, Feb 18 2011, edited by M. F. Hasler, Jun 19 2019

A083857 Square array T(n,k) of binomial transforms of generalized Fibonacci numbers, read by ascending antidiagonals, with n, k >= 0.

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 1, 3, 7, 0, 1, 3, 8, 15, 0, 1, 3, 9, 21, 31, 0, 1, 3, 10, 27, 55, 63, 0, 1, 3, 11, 33, 81, 144, 127, 0, 1, 3, 12, 39, 109, 243, 377, 255, 0, 1, 3, 13, 45, 139, 360, 729, 987, 511, 0, 1, 3, 14, 51, 171, 495, 1189, 2187, 2584, 1023, 0, 1, 3, 15, 57, 205, 648
Offset: 0

Views

Author

Paul Barry, May 06 2003

Keywords

Comments

Row n >= 0 of the array gives the solution to the recurrence b(k) = 3*b(k-1) + (n-2) * a(k-2) for k >= 2 with a(0) = 0 and a(1) = 1. These are the binomial transforms of the rows of the generalized Fibonacci numbers A083856.

Examples

			Array T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
  0, 1, 3,  7, 15,  31,  63,  127,  255, ...
  0, 1, 3,  8, 21,  55, 144,  377,  987, ...
  0, 1, 3,  9, 27,  81, 243,  729, 2187, ...
  0, 1, 3, 10, 33, 109, 360, 1189, 3927, ...
  0, 1, 3, 11, 39, 139, 495, 1763, 6279, ...
  0, 1, 3, 12, 45, 171, 648, 2457, 9315, ...
  ...
		

Crossrefs

Rows include A000225 (n=0), A001906 (n=1), A000244 (n=2), A006190 (n=3), A007482 (n=4), A030195 (n=5), A015521 (n=6).
Cf. A083856, A083861 (binomial transform), A083862 (main diagonal).

Formula

T(n, k) = ((3 + sqrt(4*n + 1))/2)^k / sqrt(4*n + 1) - ((3 - sqrt(4*n + 1))/2)^k / sqrt(4*n + 1) for n, k >= 0.
O.g.f. of row n >= 0: -x/(-1 + 3*x + (n-2)*x^2) . - R. J. Mathar, Nov 23 2007
T(n,k) = Sum_{i = 0..k} binomial(k,i)*A083856(n,i). - Petros Hadjicostas, Dec 24 2019

Extensions

Various sections edited by Petros Hadjicostas, Dec 24 2019

A180143 Eight rooks and one berserker on a 3 X 3 chessboard. G.f.: (1 + x^2)/(1 - 4*x + x^2 + 2*x^3).

Original entry on oeis.org

1, 4, 16, 58, 208, 742, 2644, 9418, 33544, 119470, 425500, 1515442, 5397328, 19222870, 68463268, 243835546, 868433176, 3092970622, 11015778220, 39233275906, 139731384160, 497660704294, 1772444881204, 6312656052202
Offset: 0

Views

Author

Johannes W. Meijer, Aug 13 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in a given corner square (m = 1, 3, 7 or 9) on a 3 X 3 chessboard. This fairy chess piece behaves like a rook on the eight side and corner squares but on the central square the rook goes berserk and turns into a berserker, see A180140.
The sequence above corresponds to just one A[5] vectors with decimal value 16. This vector leads for the side squares to A180144 and for the central square to A000012.

Crossrefs

Cf. A180141 (corner squares), A180140 (side squares), A180147 (central square).

Programs

  • Maple
    with(LinearAlgebra): nmax:=23; m:=1; A[5]:=[0,0,0,0,1,0,0,0,0]: A:= Matrix([[0,1,1,1,0,0,1,0,0], [1,0,1,0,1,0,0,1,0], [1,1,0,0,0,1,0,0,1], [1,0,0,0,1,1,1,0,0], A[5], [0,0,1,1,1,0,0,0,1], [1,0,0,1,0,0,0,1,1], [0,1,0,0,1,0,1,0,1], [0,0,1,0,0,1,1,1,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);

Formula

G.f.: (1+x^2)/(1 - 4*x + x^2 + 2*x^3).
a(n) = 4*a(n-1) - 1*a(n-2) - 2*a(n-3) with a(0)=1, a(1)=4 and a(2)=16.
a(n) = -1/2 + (9+12*A)*A^(-n-1)/34 + (9+12*B)*B^(-n-1)/34 with A=(-3+sqrt(17))/4 and B=(-3-sqrt(17))/4.
Lim_{k->infinity} a(n+k)/a(k) = (-1)^(n)*(2)^(n+1)/((2*A007482(n) - 3*A007482(n-1)) - A007482(n-1)*sqrt(17)) for n >= 1.

A189800 a(n) = 6*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 6, 44, 312, 2224, 15840, 112832, 803712, 5724928, 40779264, 290475008, 2069084160, 14738305024, 104982503424, 747801460736, 5326668791808, 37942424436736, 270267896954880, 1925146777223168, 13713023838978048, 97679317251653632, 695780094221746176
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    LinearRecurrence[{6, 8}, {0, 1}, 50]
    CoefficientList[Series[-(x/(-1+6 x+8 x^2)),{x,0,50}],x] (* Harvey P. Dale, Jul 26 2011 *)
  • PARI
    a(n)=([0,1; 8,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: x/(1 - 2*x*(3+4*x)). - Harvey P. Dale, Jul 26 2011

A015541 Expansion of x/(1 - 5*x - 7*x^2).

Original entry on oeis.org

0, 1, 5, 32, 195, 1199, 7360, 45193, 277485, 1703776, 10461275, 64232807, 394392960, 2421594449, 14868722965, 91294775968, 560554940595, 3441838134751, 21133075257920, 129758243232857, 796722742969725, 4891921417478624, 30036666288181195
Offset: 0

Views

Author

Keywords

Comments

Pisano period lengths: 1, 3, 8, 6, 8, 24, 6, 6, 24, 24, 5, 24, 12, 6, 8, 12, 16, 24, 120, 24, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

Formula

a(n) = 5*a(n-1) + 7*a(n-2).

A015544 Lucas sequence U(5,-8): a(n+1) = 5*a(n) + 8*a(n-1), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 5, 33, 205, 1289, 8085, 50737, 318365, 1997721, 12535525, 78659393, 493581165, 3097180969, 19434554165, 121950218577, 765227526205, 4801739379641, 30130517107845, 189066500576353, 1186376639744525, 7444415203333449, 46713089134623445
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 5*Self(n-1) + 8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 13 2012
    
  • Mathematica
    a[n_]:=(MatrixPower[{{1,2},{1,-6}},n].{{1},{1}})[[2,1]]; Table[Abs[a[n]],{n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
    LinearRecurrence[{5, 8}, {0, 1}, 30] (* Vincenzo Librandi, Nov 13 2012 *)
  • PARI
    A015544(n)=imag((2+quadgen(57))^n) \\ M. F. Hasler, Mar 06 2009
    
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1 - 5*x - 8*x^2))) \\ G. C. Greubel, Jan 01 2018
  • Sage
    [lucas_number1(n,5,-8) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
    

Formula

a(n) = 5*a(n-1) + 8*a(n-2).
G.f.: x/(1 - 5*x - 8*x^2). - M. F. Hasler, Mar 06 2009

Extensions

More precise definition by M. F. Hasler, Mar 06 2009

A112906 A skew generalized Pascal triangle.

Original entry on oeis.org

1, 0, 3, 0, 1, 10, 0, 0, 6, 33, 0, 0, 1, 29, 109, 0, 0, 0, 9, 126, 360, 0, 0, 0, 1, 57, 516, 1189, 0, 0, 0, 0, 12, 306, 2034, 3927, 0, 0, 0, 0, 1, 94, 1491, 7807, 12970, 0, 0, 0, 0, 0, 15, 600, 6813, 29382, 42837, 0, 0, 0, 0, 0, 1, 140, 3385, 29737, 108923, 141481, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Paul Barry, Oct 05 2005

Keywords

Comments

Main diagonal is A006190. Row sums are A007482. Column sums are A001076(n+1). Compare with [0,1/3,-1/3,0,0,..] DELTA [3,1/3,-1/3,0,0,...] where DELTA is the operator defined in A084938. A skewed version of the Riordan array (1/(1-3x-x^2),x/(1-3x-x^2)).

Examples

			Triangle begins
1;
0, 3;
0, 1, 10;
0, 0, 6, 33;
0, 0, 1, 29, 109;
0, 0, 0, 9, 126, 360,
0, 0, 0, 1, 57, 516, 1189;
0, 0, 0, 0, 12, 306, 2034, 3927;
0, 0, 0, 0, 1, 94, 1491, 7809, 12970;
		

Crossrefs

Cf. A112899.

Formula

G.f.: 1/(1-3xy(1+x/3)-x^2*y^2); T(n, k)=sum{j=0..floor((2k-n)/2), C(k-j, n-k)C(2k-n, j)3^(2k-2j-n)}; T(n, k) = 3*T(n-1, k-1)+T(n-2, k-1)+T(n-2, k-2).

A152268 Expansion of g.f. x/(1-7*x+8*x^2).

Original entry on oeis.org

0, 1, 7, 41, 231, 1289, 7175, 39913, 221991, 1234633, 6866503, 38188457, 212387175, 1181202569, 6569320583, 36535623529, 203194800039, 1130078612041, 6284991883975, 34954314291497, 194400264968679, 1081167340448777
Offset: 0

Views

Author

Roger L. Bagula, Dec 01 2008

Keywords

Comments

Binomial transform of 0, 1, 5, 23, 105, ... (A107839 with an additional initial term 0) and second binomial transform of 0, 1, 3, 11, 39, ... (A007482 with an additional initial term 0). - Klaus Purath, Sep 09 2024

Programs

  • Sage
    [lucas_number1(n,7,8) for n in range(0, 22)] # Zerinvary Lajos, Apr 23 2009

Formula

From R. J. Mathar, Dec 04 2008: (Start)
a(n) = 7*a(n-1) - 8*a(n-2).
G.f.: x/(1-7*x+8*x^2). (End)

A368156 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 2*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 + x^2.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 3, 10, 14, 12, 5, 20, 41, 44, 29, 8, 40, 98, 148, 131, 70, 13, 76, 224, 408, 497, 376, 169, 21, 142, 482, 1044, 1542, 1588, 1052, 408, 34, 260, 1003, 2492, 4351, 5456, 4894, 2888, 985, 55, 470, 2026, 5684, 11359, 16790, 18400, 14672, 7813
Offset: 1

Views

Author

Clark Kimberling, Jan 20 2024

Keywords

Comments

Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers.

Examples

			First eight rows:
   1
   1    2
   2    4    5
   3   10   14    12
   5   20   41    44    29
   8   40   98   148   131    70
  13   76  224   408   497   376   169
  21  142  482  1044  1542  1588  1052  408
Row 4 represents the polynomial p(4,x) = 3 + 10*x + 14*x^2 + 12*x^3, so (T(4,k)) = (3,10,14,12), k=0..3.
		

Crossrefs

Cf. A000045 (column 1); A000129, (p(n,n-1)); A007482 (row sums), (p(n,1)); A077925 (alternating row sums), (p(n,-1)); A057088, (p(n,2)); A015523, (p(n,-2)); A015568, (p(n,3)); A180250, (p(n,-3)); A094440, A367208, A367209, A367210, A367211, A367297, A367298, A367299, A367300, A367301, A368150, A368151, A368152, A368153, A368154, A368155.

Programs

  • Mathematica
    p[1, x_] := 1; p[2, x_] := 1 + 2 x; u[x_] := p[2, x]; v[x_] := 1 + 2x^2;
    p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
    Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]

Formula

p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 1 + 2*x, u = p(2,x), and v = 1 + x^2.
p(n,x) = k*(b^n - c^n), where k = -1/sqrt(5 + 4*x + 8*x^2), b = (1/2)*(2*x + 1 - 1/k), c = (1/2)*(2*x + 1 + 1/k).
Previous Showing 31-40 of 49 results. Next