cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 52 results. Next

A023230 Numbers k such that k and 8*k + 5 are both prime.

Original entry on oeis.org

3, 7, 13, 19, 43, 67, 103, 109, 127, 139, 151, 181, 193, 199, 211, 223, 241, 277, 283, 349, 379, 397, 421, 433, 439, 463, 577, 601, 607, 613, 619, 727, 733, 787, 829, 853, 883, 967, 991, 1033, 1039, 1117, 1201, 1237, 1291, 1303, 1399, 1429, 1459, 1531, 1567, 1579
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007521 (primes of form 8n+5), A105133 (numbers n such that 8n+5 is prime).

Programs

A105140 Numbers n such that 1024n+513 is prime.

Original entry on oeis.org

7, 10, 11, 17, 22, 25, 31, 35, 44, 50, 65, 74, 79, 82, 85, 94, 100, 109, 110, 112, 115, 116, 122, 130, 140, 149, 151, 154, 155, 157, 164, 166, 172, 179, 206, 211, 214, 215, 221, 227, 229, 232, 245, 254, 256, 259, 269, 271, 277, 280, 281, 292, 295, 296, 299, 316, 322, 332
Offset: 1

Views

Author

N. J. A. Sloane, based on correspondence from Marco Matosic, Apr 11 2005

Keywords

Crossrefs

Programs

A343113 Numbers having exactly 1 divisor of the form 8*k + 5.

Original entry on oeis.org

5, 10, 13, 15, 20, 21, 25, 26, 29, 30, 35, 37, 39, 40, 42, 50, 52, 53, 55, 58, 60, 61, 63, 69, 70, 74, 75, 77, 78, 80, 84, 87, 91, 93, 95, 100, 101, 104, 106, 109, 110, 111, 115, 116, 120, 122, 126, 133, 138, 140, 141, 143, 147, 148, 149, 150, 154, 155
Offset: 1

Views

Author

Jianing Song, Apr 05 2021

Keywords

Examples

			52 is a term since among the divisors of 52 (namely 1, 2, 4, 13, 26 and 52), the only divisor congruent to 5 modulo 8 is 13.
		

Crossrefs

Numbers having m divisors of the form 8*k + i: A343107 (m=1, i=1), A343108 (m=0, i=3), A343109 (m=0, i=5), A343110 (m=0, i=7), A343111 (m=2, i=1), A343112 (m=1, i=3), this sequence (m=1, i=5), A141164 (m=1, i=7).
Indices of 1 in A188171.
A007521 is a subsequence.

Programs

  • PARI
    res(n,a,b) = sumdiv(n, d, (d%a) == b)
    isA343113(n) = (res(n,8,5) == 1)

A175461 Semiprimes of form 8n+5.

Original entry on oeis.org

21, 69, 77, 85, 93, 133, 141, 205, 213, 221, 237, 253, 301, 309, 341, 365, 381, 413, 437, 445, 453, 469, 485, 493, 501, 517, 533, 565, 573, 581, 589, 597, 629, 669, 685, 717, 749, 781, 789, 813, 869, 893, 901, 917, 933, 949, 965, 973, 989, 1037, 1077, 1101
Offset: 1

Views

Author

Zak Seidov, May 23 2010

Keywords

Comments

There are no squares of form 8n+5.

Crossrefs

Cf. A001358 Semiprimes: products of two primes, A004770 Numbers of form 8n+5, A007521 Primes of form 8n+5, A175462 Number of divisors of integers of form 8n+5, A175463 Numbers n such that 8*n+5 is semiprime.

Programs

  • Mathematica
    Select[8*Range[200]+5,PrimeOmega[#]==2&] (* Harvey P. Dale, Apr 29 2015 *)
  • PARI
    lista(nn) = {vec = vector(nn, i, 8*i+5); smp = select(i->(bigomega(i) == 2), vec); print(smp);} \\ Michel Marcus, Oct 15 2013

A263011 Numbers D == 1 (mod 8), not a square, and if composite without prime factors 3 or 5 (mod 8).

Original entry on oeis.org

17, 41, 73, 89, 97, 113, 137, 161, 193, 217, 233, 241, 257, 281, 313, 329, 337, 353, 401, 409, 433, 449, 457, 497, 521, 553, 569, 577, 593, 601, 617, 641, 673, 697, 713, 721, 761, 769, 809, 833, 857, 881, 889, 929, 937, 953, 977, 1009, 1033, 1049, 1057, 1081, 1097, 1129, 1153, 1169, 1193, 1201, 1217
Offset: 1

Views

Author

Wolfdieter Lang, Nov 17 2015

Keywords

Comments

These numbers are the odd D candidates for the (generalized) Pell equation x^2 - D*y^2 = +8 which could have proper solutions (x, y) with x and y both odd (and gcd(x, y) = 1).
Proof: Put x =2*X + 1, y = 2*Y + 1; then 8*(T(X) - D*T(Y)) = 8 - 1 + D = 7 + D, with the triangular numbers T = A000217. Hence, D == -7 (mod 8) == +1 (mod 8). Only nonsquare numbers D are considered for the Pell equation (square D leads to a factorization with only one solution: D = 1, (x, y) = (3, 1)). Consider a prime factor p == 3 or 5 (mod 8) (A007520 or A007521) of D. Then x^2 == 8 (mod p). Because the Legendre symbol (8/p) = (2*2^2/p) = (2/p) == (-1)^(p^2-1)/8 (see, e.g., Nagell, eq. (3), p. 138) this becomes -1 for these primes p, and therefore a candidate for D cannot have any prime factors 3 or 5 (mod 8).
However, not all of these candidates admit solutions. For the exceptions see A264348.
The remaining Ds (that admit solutions) are given in A263012.

References

  • T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964.

Crossrefs

Programs

  • Mathematica
    Select[8 Range@ 154 + 1, Or[PrimeQ@ #, CompositeQ@ # && AllTrue[Union@ Mod[First /@ FactorInteger@ #, 8], ! MemberQ[{3, 5}, #] &]] && ! IntegerQ@ Sqrt@ # &] (* Michael De Vlieger, Dec 11 2015, Version 10 *)

A045323 Primes congruent to {1, 2, 3, 7} (mod 8).

Original entry on oeis.org

2, 3, 7, 11, 17, 19, 23, 31, 41, 43, 47, 59, 67, 71, 73, 79, 83, 89, 97, 103, 107, 113, 127, 131, 137, 139, 151, 163, 167, 179, 191, 193, 199, 211, 223, 227, 233, 239, 241, 251, 257, 263, 271, 281, 283, 307, 311
Offset: 1

Views

Author

Keywords

Comments

Numbers x such that x^4 = 4 has a solution mod p.

Crossrefs

Subsequence of A004776; see also A007521.

Programs

  • Haskell
    a045323 n = a045323_list !! (n-1)
    a045323_list = filter ((== 1). a010051) a004776_list
    -- Reinhard Zumkeller, Aug 17 2012
  • Magma
    [ p: p in PrimesUpTo(400) | p mod 8 in {1, 2, 3, 7} ]; // Vincenzo Librandi, Aug 07 2012
    
  • Mathematica
    Select[Prime[Range[300]],MemberQ[{1,2,3,7},Mod[#,8]]&] (* Vincenzo Librandi, Aug 07 2012 *)

A105131 Primes of the form 512n+257.

Original entry on oeis.org

257, 769, 3329, 7937, 9473, 14081, 14593, 22273, 23297, 26881, 30977, 31489, 36097, 37633, 40193, 41729, 43777, 46337, 49409, 49921, 57089, 57601, 60161, 70913, 75521, 77569, 78593, 84737, 88321, 91393, 96001, 98561, 100609, 103681, 106753, 107777
Offset: 1

Views

Author

N. J. A. Sloane, based on correspondence from Marco Matosic, Apr 11 2005

Keywords

Crossrefs

Programs

  • Magma
    [ a: n in [0..210] | IsPrime(a) where a is 512*n+257 ]; // Vincenzo Librandi, Jul 19 2012
  • Mathematica
    Select[Table[512*n+257,{n,0,800}],PrimeQ] (* Vincenzo Librandi, Jul 19 2012 *)

A343104 Smallest number having exactly n divisors of the form 8*k + 1.

Original entry on oeis.org

1, 9, 81, 153, 891, 1377, 8019, 3825, 11025, 15147, 88209, 31977, 354375, 99225, 121275, 95931, 7144929, 187425, 893025, 287793, 1403325, 1499553, 1715175, 675675, 1091475, 6024375, 1576575, 1686825, 72335025, 2027025, 2264802453041139, 2297295, 11609325, 121463793, 9823275
Offset: 1

Views

Author

Jianing Song, Apr 05 2021

Keywords

Comments

Smallest index of n in A188169.
a(n) exists for all n, since 3^(2n-2) has exactly n divisors of the form 8*k + 1, namely 3^0, 3^2, ..., 3^(2n-2). This actually gives an upper bound for a(n).
From David A. Corneth, Apr 05 2021: (Start)
All terms are odd since if a term is even then the odd part has the same number of such divisors.
No a(2*k + 1) is divisible by a prime congruent to 1 (mod 8).
If for some k, A188169(k) > m then A188169(k*t) > m for all t > 0. This can be used to trim searches when looking for some a(m).
If gcd(k, m) = 1 then A188169(k) * A188169(m) <= A188169(k*m) (End)

Examples

			a(4) = 153 since it is the smallest number with exactly 4 divisors congruent to 1 modulo 8, namely 1, 9, 17 and 153.
		

Crossrefs

Smallest number having exactly n divisors of the form 8*k + i: this sequence (i=1), A343105 (i=3), A343106 (i=5), A188226 (i=7).
Cf. A188169.

Programs

  • PARI
    res(n,a,b) = sumdiv(n, d, (d%a) == b)
    a(n) = if(n>0, for(k=1, oo, if(res(k,8,1)==n, return(k))))

Formula

a(2n-1) <= 3^(2n-2) * 11, since 3^(2n-2) * 11 has exactly 2n-1 divisors congruent to 1 modulo 8: 3^0, 3^2, ..., 3^(2n-2), 3^1 * 11, 3^3 * 11, ..., 3^(2n-3) * 11.
a(2n) <= 3^(n-1) * 187, since 3^(n-1) * 187 has exactly 2n divisors congruent to 1 modulo 8: 3^0, 3^2, ..., 3^b, 3^0 * 17, 3^2 * 17, ..., 3^b * 17, 3^1 * 11, 3^3 * 11, ..., 3^a * 11, 3^1 * 187, 3^3 * 187, ... 3^a * 187, where a is the largest odd number <= n-1 and b is the largest even number <= n-1.

Extensions

More terms from David A. Corneth, Apr 06 2021

A105127 Primes of the form 32n+17.

Original entry on oeis.org

17, 113, 241, 337, 401, 433, 593, 881, 977, 1009, 1201, 1297, 1361, 1489, 1553, 1777, 1873, 2129, 2161, 2417, 2609, 2801, 2833, 2897, 3089, 3121, 3217, 3313, 3697, 3761, 3793, 3889, 4049, 4177, 4241, 4273, 4337, 4561, 4657, 4721, 4817, 5009, 5233, 5297
Offset: 1

Views

Author

N. J. A. Sloane, based on correspondence from Marco Matosic, Apr 11 2005

Keywords

Crossrefs

Programs

A105129 Primes of the form 128n+65.

Original entry on oeis.org

193, 449, 577, 1217, 1601, 2113, 2753, 3137, 4289, 4673, 4801, 5441, 5569, 5953, 6337, 6977, 7489, 7873, 8513, 8641, 9281, 10177, 10433, 11329, 11969, 12097, 13121, 13249, 13633, 14401, 14657, 15809, 15937, 16193, 17729, 19009, 19777, 20161, 20929, 21313
Offset: 1

Views

Author

N. J. A. Sloane, based on correspondence from Marco Matosic, Apr 11 2005

Keywords

Crossrefs

Programs

  • Magma
    [ a: n in [0..200] | IsPrime(a) where a is 128*n+65 ]; // Vincenzo Librandi, Jul 19 2012
  • Mathematica
    Select[128*Range[0,200]+65,PrimeQ] (* Harvey P. Dale, Apr 17 2012 *)
    Select[Table[128*n+65,{n,0,700}],PrimeQ] (* Vincenzo Librandi, Jul 19 2012 *)
Previous Showing 21-30 of 52 results. Next