A163211
Swinging Wilson quotients (A163210) which are primes.
Original entry on oeis.org
3, 23, 71, 757, 30671, 1383331, 245273927, 3362110459, 107752663194272623, 5117886516250502670227, 34633371587745726679416744736000996167729085703, 114326045625240879227044995173712991937709388241980425799
Offset: 1
The quotient (252+1)/11 = 23 is a swinging Wilson quotient and a prime, so 23 is a member.
-
A163211 := n -> select(isprime,A163210(n));
-
sf[n_] := n!/Quotient[n, 2]!^2; a[n_] := (p = Prime[n]; (sf[p - 1] + (-1)^Floor[(p + 2)/2])/p); Select[PrimeQ][Table[a[n], {n, 1, 100}]] (* G. C. Greubel, Dec 10 2016 *)
-
sf(n)=n!/(n\2)!^2
forprime(p=2,1e3, t=sf(p-1)\/p; if(isprime(t), print1(t", "))) \\ Charles R Greathouse IV, Dec 11 2016
A222207
Morley quotients: (2^(2*p-2) - (-1)^((p-1)/2)*binomial(p-1,(p-1)/2)) / p^3, where p = prime(n) and n >= 3.
Original entry on oeis.org
2, 12, 788, 7636, 874202, 10018884, 1445893544, 2954512034024, 38700329118256, 93229749133527532, 17540746936557672236, 243284404062970619608, 47694250379410432495952, 136236017676683906365850456, 404504597532158799519693872144, 5856120097210409121404621878992, 18102352585707069737371994385420772, 3894254646848417473467131712404310728
Offset: 3
prime(3) = 5, so a(3) = (2^(2*5-2) - (-1)^((5-1)/2)*binomial(5-1,(5-1)/2))/5^3 = (2^8 - binomial(4,2))/5^3 = (256-6)/125 = 2.
- Vincenzo Librandi, Table of n, a(n) for n = 3..200
- C. Aebi, G. Cairns, Morley’s other miracle, Math. Mag., 85 (2012), 205-211.
- F. Morley, Note on the Congruence 2^4n == (-1)^n*(2n)!/(n!)^2 where 2n+1 is a prime, Annals of Mathematics, Vol. 9 (1894 - 1895), pp. 168-170.
-
m[p_] := (2^(2*p-2) - (-1)^((p-1)/2)*Binomial[p-1, (p-1)/2])/p^3; Table[ m[ Prime[n]], {n, 3, 20}]
A225906
Indices of primes whose Wilson quotients are also prime.
Original entry on oeis.org
3, 4, 5, 10, 137, 216, 381
Offset: 1
The Wilson quotient of 7 is ((7-1)!+1)/7 = 103, which is prime, and 7 is the 4th prime, so 4 is a member.
- J. Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, in Proceedings of CANT 2011, arXiv:1110.3113
- J. Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, Combinatorial and Additive Number Theory, CANT 2011 and 2012, Springer Proc. in Math. & Stat., vol. 101 (2014), pp. 243-255.
A239564
a(n) = (round(c^prime(n)) - 1)/prime(n), where c is the pentanacci constant (A103814).
Original entry on oeis.org
154, 504, 5758, 19912, 245714, 11251030, 40679232, 1967728552, 26525975822, 97753187576, 1335948880418, 68398141417510, 3547322151373882, 13260715720748120, 697034813138756392, 9825603574709578482, 36935066391752894480, 1970457739485406707872
Offset: 5
A292691
a(n) = C(A001359(n)), n >= 1, with C(n) = (4*((n-1)! + 1) + n)/(n*(n+2)) for n >= 2.
Original entry on oeis.org
1, 3, 101505, 259105757127, 1356566605613854774200240267, 1851197466245939272480116323530608949000567215
Offset: 1
a(2) = 3, because A001359(2) = 5 and C(5) = (4*(4! + 1) + 5)/(5*7) = 3.
a(2) = 3 because A014574(2) = 6 and delta(6) = (4*4! + 6 + 3)/35 = 3.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford Science Publications, 1979.
- P. Ribenboim, The New Book of Prime Number Records, Springer-Verlag NY 1996, pp. 259-260 (a proof of Clement's theorem).
-
p1[1] = 3; p1[n_] := p1[n] = (p = NextPrime[p1[n-1]]; While[!PrimeQ[p + 2], p = NextPrime[p]]; p);
a[n_] := (4*((p1[n] - 1)! + 1) + p1[n])/(p1[n]*(p1[n] + 2));
Array[a, 6] (* Jean-François Alcover, Nov 04 2017 *)
-
c(n) = (4*(n - 2)! + n + 3) / (n^2 - 1);
lista(nn) = forprime(p=2, nn, if (isprime(p+2), print1(c(p+1), ", "));); \\ Michel Marcus, Sep 21 2017
-
# Python version 2.7
import math
from sympy import *
list = []
n = 3
l = 1 # parameter that indicates the desired length of the list
x = 1
while x <= l:
y = (4*factorial(n-2))+n+3
z = n**2 - 1
if y % z == 0:
print (y/z)
list.append(y/z)
n+=1
x+=1
A091330
a(n) = ((p-1)!/p) - ((p-1)*(p-1)!/p!), where p is the n-th prime.
Original entry on oeis.org
0, 0, 4, 102, 329890, 36846276, 1230752346352, 336967037143578, 48869596859895986086, 10513391193507374500051862068, 8556543864909388988268015483870, 10053873697024357228864849950022572972972
Offset: 1
Prime(4)=7 so a(4) = 6!/7 - 6*6!/7! = 102
A152413
Generalized Wilson primes of order 17; or primes p such that p^2 divides 16!(p-17)! + 1.
Original entry on oeis.org
A193447
a(n) = ((p - 2)! + p - 1)/(p*(p - 1)) where p is the n-th prime.
Original entry on oeis.org
3, 3299, 255877, 4807626353, 1040021719579, 100970241446066087, 13409937746820630739862069, 9507270961010432209186683871, 7757618593382991688938927430572972973, 12437732976339904486975781548721278876097561, 18522993694996570934756402022946152638511627907
Offset: 4
a(4) = (5! + 6)/(7*6) = 126/42 = 3.
a(5) = (9! + 10)/(11*10) = 362890/110 = 3299.
A225672
Primes p such that the Wilson quotient of the p-th prime is also prime.
Original entry on oeis.org
The 5th prime is 11 and the Wilson quotient of 11 is ((11-1)!+1)/11 = 329891, which is prime, so 5 is a term.
- Jonathan Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, in Proceedings of CANT 2011, arXiv:1110.3113
- Jonathan Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, Combinatorial and Additive Number Theory, CANT 2011 and 2012, Springer Proc. in Math. & Stat., vol. 101 (2014), pp. 243-255.
A239565
(Round(c^prime(n)) - 1)/prime(n), where c is the hexanacci constant (A118427).
Original entry on oeis.org
6702, 23594, 301738, 14576792, 53653610, 2738173594, 38254296398, 143514673148, 2032676550562, 109797468019174, 6007838407290514, 22863415355711030, 1267938526864061370, 18523200405015238420, 70884650213591098558, 3989789924439684599434
Offset: 7
Comments