cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A164740 (2^p-(p+2))/p as p runs through the primes.

Original entry on oeis.org

0, 1, 5, 17, 185, 629, 7709, 27593, 364721, 18512789, 69273665, 3714566309, 53634713549, 204560302841, 2994414645857, 169947155749829, 9770521225481753, 37800705069076949, 2202596307308603177
Offset: 1

Views

Author

Tanin (Mirza Sabbir Hossain Beg) (mirzasabbirhossainbeg(AT)yahoo.com), Aug 24 2009

Keywords

Programs

  • Mathematica
    f[n_] := Block[{p = Prime@n}, (2^p - p - 2)/p]; Array[f, 15]
    Table[(2^p-p-2)/p,{p,Prime[Range[20]]}] (* Harvey P. Dale, Aug 15 2017 *)

Formula

a(n) = 2*A007663(n)-1. [T. D. Noe, Aug 24 2009]

Extensions

Edited by N. J. A. Sloane, Aug 24 2009
Extended and offset changed by T. D. Noe and Robert G. Wilson v, Aug 24 2009

A175257 a(n) is the smallest prime p such that 2^(p-1) == 1 (mod a(1)*...*a(n-1)*p).

Original entry on oeis.org

3, 5, 13, 37, 73, 109, 181, 541, 1621, 4861, 9721, 19441, 58321, 87481, 379081, 408241, 2041201, 2449441, 7348321, 14696641, 22044961, 95528161, 382112641, 2292675841, 8024365441, 40121827201, 481461926401, 722192889601, 2888771558401, 7944121785601, 55608852499201, 111217704998401, 889741639987201, 1779483279974401
Offset: 1

Views

Author

Manuel Valdivia, Mar 15 2010

Keywords

Comments

Conjecture: a(n) is the smallest integer k > 1 such that 2^(k-1) == 1 (mod a(0)*...*a(n-1)*k), with a(0) = 1. - Thomas Ordowski, Mar 13 2019
Either a(n) > a(n-1), or a(n) = a(n-1) is a Wieferich prime (A001220). - Max Alekseyev, Sep 29 2024

Crossrefs

Programs

  • Mathematica
    i=1;Do[p=Prime[n];If[Mod[2^(p-1)-1,p*i]==0,Print[p];i=p*i],{n,2,78498}]
  • PARI
    findprime(prd) = {forprime(p=2, , if (Mod(2, p*prd)^(p-1) == 1, return (p)););}
    lista(nn) = {my(prd = 1, na); for (n=1, nn, na = findprime(prd); print1(na, ", "); prd *= na;);} \\ Michel Marcus, Mar 14 2019
    
  • PARI
    { a175257_first_terms(N=1000) = my(P,L,t); P=[3]; L=2; for(n=#P,N, print(n," ",P[n]); forstep(p=P[n],oo,Mod(1,L), if(p==P[n], if(Mod(2,p^2)^(p-1)==1, error("Wieferich prime!"), next)); if(ispseudoprime(p), P=concat(P,[p]); t=Mod(2,p)^L; fordiv((p-1)\L,d, if(t^d==1, L*=d; break)); break))); P; } \\ Max Alekseyev, Sep 29 2024

Extensions

a(17)-a(26) from Amiram Eldar, Feb 03 2019
Name corrected by Thomas Ordowski, Mar 13 2019
a(27) from Hans Havermann, Mar 29 2019
Eliminated a(0)=1 in the definition (empty products equal 1). - R. J. Mathar, Jun 19 2021
Terms a(28) onward from Max Alekseyev, Sep 29 2024

A239565 (Round(c^prime(n)) - 1)/prime(n), where c is the hexanacci constant (A118427).

Original entry on oeis.org

6702, 23594, 301738, 14576792, 53653610, 2738173594, 38254296398, 143514673148, 2032676550562, 109797468019174, 6007838407290514, 22863415355711030, 1267938526864061370, 18523200405015238420, 70884650213591098558, 3989789924439684599434
Offset: 7

Views

Author

Keywords

Comments

For n>=7, round(c^prime(n)) == 1 (mod 2*prime(n)). Proof in Shevelev link. In particular, all terms are even.

Crossrefs

A239566 (Round(c^prime(n)) - 1)/prime(n), where c is the heptanacci constant (A118428).

Original entry on oeis.org

7200, 25562, 332466, 16472758, 61145666, 3200477798, 45473543628, 172043098818, 2478186385762, 137291966046470, 7704742900338106, 29569459376703894, 1681851263230158754, 24987922624169214866, 96433670513455876108, 5566902760779797458210
Offset: 7

Views

Author

Keywords

Comments

For n>=7, round(c^prime(n)) == 1 (mod 2*prime(n)). Proof in Shevelev link. In particular, all terms are even.

Crossrefs

Formula

All roots of the equation x^7-x^6-x^5-x^4-x^3-x^2-x-1 = 0
are the following: c=1.9919641966050350211,
-0.78418701799584451319 +/- 0.36004972226381653409*i,
-0.24065633852269642508 + /- 0.84919699909267892575*i,
0.52886125821602342773 +/- 0.76534196109589443115*i.
Absolute values of all roots, except for septanacci constant c, are less than 1.
Conjecture. Absolute values of all roots of the equation x^n - x^(n-1) - ... -x - 1 = 0, except for n-bonacci constant c_n, are less than 1. If the conjecture is valid, then for sufficiently large k=k(n), for all m>=k, we have round(c_n^prime(m)) == 1 (mod 2*prime(m)) (cf. Shevelev link).

A128465 Numbers k such that k divides the numerator of alternating Harmonic number H'((k+1)/2) = A058313((k+1)/2).

Original entry on oeis.org

1, 5, 7, 71, 379, 2659
Offset: 1

Views

Author

Alexander Adamchuk, Mar 10 2007

Keywords

Comments

For k > 1 all 5 listed terms are primes.
The only known numbers k such that k divides the numerator of alternating Harmonic number H'((k-1)/2) = A058313((k-1)/2) are the Wieferich primes (A001220): 1093 and 3511.
An odd prime p = prime(n) belongs to this sequence iff Fermat quotient A007663(n) == A130912(n) == 2*(-1)^((p+1)/2) (mod p). - Max Alekseyev, Nov 30 2022

Crossrefs

Programs

  • Mathematica
    f=0; Do[ f = f + (-1)^(n+1)*1/n; g = Numerator[f]; If[ IntegerQ[ g/(2n-1) ], Print[2n-1]], {n,1,3000} ]

Extensions

Edited by Max Alekseyev, Nov 30 2022

A213327 Analog of Fermat quotients: a(n) = (round((phi_2)^p)-2)/p, where phi_2 is silver ratio 1+sqrt(2) and p = prime(n).

Original entry on oeis.org

2, 4, 16, 68, 1476, 7280, 189120, 986244, 27676612, 4346071600, 23696518916, 3930960079760, 120508933265760, 669708812842692, 20814182249890948, 3654563002853231440, 650000099752136709444, 3664265812073801505200, 660535426260570501876228
Offset: 1

Views

Author

Keywords

Comments

For similar sequence for base 2, see A007663, for a similar sequence for golden ratio, see A064723.

Crossrefs

A213328 Analog of Fermat quotients: a(n) = (round((phi_3)^p)-3)/p, where phi_3 = (3+sqrt(13))/2 and p = prime(n).

Original entry on oeis.org

4, 11, 78, 612, 46374, 428040, 38948910, 380144556, 37367223558, 38467601033550, 392545092308724, 426897839167539480, 45841425452161683630, 476794964068892779068, 51906117696097060014342, 59746844088106673671809870, 69664778857791165966384195366
Offset: 1

Views

Author

Keywords

Comments

For similar sequence for base 2, see A007663. For similar sequences for golden ratio and silver ratio, see A064723 and A213327. Note that phi_3 is called "bronze ratio".

Crossrefs

A219539 T(n,k) is the number of k-points on the left side of a crosscut of simple symmetric n-Venn diagram.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 1, 1, 4, 11, 19, 23, 19, 11, 4, 1, 1, 5, 17, 38, 61, 71, 61, 38, 17, 5, 1, 1, 7, 33, 107, 257, 471, 673, 757, 673, 471, 257, 107, 33, 7, 1, 1, 8, 43, 161, 451, 977, 1675, 2303, 2559, 2303, 1675, 977, 451, 161, 43, 8, 1
Offset: 5

Views

Author

Michel Marcus, Nov 22 2012

Keywords

Comments

A crosscut of a Venn diagram is defined as a segment of a curve which sequentially "cuts" (i.e., intersects) every other curve without repetition.
For n=2 and 3, there are 4 and 6 crosscuts respectively.
For n>3, there are either n crosscuts or none.
A k-point in a simple monotone Venn diagram is defined as being an intersection point that is incident to two k-regions.
The corresponding row sums are 3, 9, 93, .... (that is A007663).

Examples

			T(n, k) is defined for n>=5 being prime:
  5:  1, 1, 1,
  7:  1, 2, 3, 2, 1,
  11: 1, 4, 11, 19, 23, 19, 11, 4, 1,
  ...
		

Crossrefs

Programs

  • PARI
    a(m) = {for (n=5, m, if (isprime(n), for (k=1, n-2,if (k==1, rk =1, rk = (binomial(n-1, k)+ (-1)^(k+1))/n);print1(rk, ", "););););}

Formula

For 1<=k=5 being prime.
T(n, k) - T(n, k-1) = (A000108(k-1) + 2*(-1)^(k+1))/n.

A329238 Carmichael quotients to base 2: a(n) = (2^lambda(2*n-1)-1)/(2*n-1), where lambda is the Carmichael lambda function (A002322).

Original entry on oeis.org

1, 1, 3, 9, 7, 93, 315, 1, 3855, 13797, 3, 182361, 41943, 9709, 9256395, 34636833, 31, 117, 1857283155, 105, 26817356775, 102280151421, 91, 1497207322929, 89756051247, 1285, 84973577874915, 19065, 4599, 4885260612740877, 18900352534538475, 1, 63, 1101298153654301589
Offset: 1

Views

Author

Amiram Eldar, Nov 08 2019

Keywords

Examples

			a(3) = (2^lambda(2*3 - 1) - 1)/(2*3 - 1) = (2^lambda(5) - 1)/5 = (2^4 - 1)/5 = 3.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (2^CarmichaelLambda[n] - 1)/n; Table[a[n], {n, 1, 67, 2}]

A104137 Number of distinct necklaces with p beads of two possible colors, allowing turning over, p being a prime greater than 2.

Original entry on oeis.org

4, 8, 18, 126, 380, 4112, 14310, 184410, 9272780, 34669602, 1857545300, 26818405352, 102282248574, 1497215711538, 84973644983780, 4885261149611790, 18900353608280300, 1101298162244236182, 16628051030379615882
Offset: 1

Views

Author

Lekraj Beedassy, Mar 07 2005

Keywords

Comments

For the general necklace problem, see A000029.

References

  • Martin Gardner, The Colossal Book of Mathematics, pp. 19, W. W. Norton & Co., NY 2001 (or, New Mathematical Diversions, pp. 243-4 MAA Washington DC 1995).

Crossrefs

Cf. A000029.

Programs

  • Maple
    for p from 2 to 30 do printf(`%d,`,(2^(ithprime(p)-1)-1)/ithprime(p) + 2^((ithprime(p)-1)/2) + 1) od: # James Sellers, Apr 10 2005

Formula

a(n) = (2^(p-1) - 1)/p + 2^{(p-1)/2} + 1 = A007663(n) + A061285(n) + 1.

Extensions

More terms from James Sellers, Apr 10 2005
Previous Showing 21-30 of 33 results. Next