cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 67 results. Next

A345632 Sum of terms of even index in the binomial decomposition of n^(n-1).

Original entry on oeis.org

1, 1, 5, 28, 353, 3376, 66637, 908608, 24405761, 432891136, 14712104501, 321504185344, 13218256749601, 343360783937536, 16565151205544957, 498676704524517376, 27614800115689879553, 945381827279671853056, 59095217374989483261925, 2267322327322331161821184, 157904201452248753415276001
Offset: 1

Views

Author

Olivier Gérard, Jun 21 2021

Keywords

Comments

When writing n^(n-1) (A000169) as a sum of powers of n using the binomial theorem, one can separately sum the even and the odd powers of n. This is the even part.

Crossrefs

Cf. A345633 (odd part).

Programs

  • Mathematica
    Table[Plus @@ Table[(n-1)^(2 k) Binomial[n-1, 2 k], {k, 0, Floor[n/2]}], {n, 1, 21}]

Formula

a(n+1) = Sum_{k=0..floor(n/2)} n^(2k) binomial(n, 2k).
a(n+1) = ((1 - n)^n + (1 + n)^n)/2. - Stefano Spezia, Jun 21 2021

A345633 Sum of terms of odd index in the binomial decomposition of n^(n-1).

Original entry on oeis.org

0, 1, 4, 36, 272, 4400, 51012, 1188544, 18640960, 567108864, 11225320100, 421504185344, 10079828372880, 450353989316608, 12627774819845668, 654244800082329600, 21046391759976988928, 1240529732459024678912, 45032132922921758270916, 2975557672677668838178816
Offset: 1

Views

Author

Olivier Gérard, Jun 21 2021

Keywords

Comments

When writing n^(n-1) (A000169) as a sum of powers of n using the binomial theorem, one can separately sum the even and the odd powers of n. This is the odd part. See the Formula section.

Crossrefs

Cf. A345632 (even part).

Programs

  • Mathematica
    Table[Plus @@ Table[(n - 1)^(2 k + 1) Binomial[n - 1, 2 k + 1], {k, 0, Floor[(n - 1)/2]}], {n, 1, 21}]

Formula

a(n+1) = Sum_{k=0..floor((n-1)/2)} n^(2k+1)*binomial(n, 2k+1).
a(n+1) = ((1 + n)^n - (1 - n)^n)/2.

A346963 Decimal expansion of Integral_{x=-1/e..0} LambertW(x)*LambertW(-1,x) dx.

Original entry on oeis.org

2, 1, 6, 5, 7, 7, 7, 7, 0, 4, 3, 6, 0, 0, 7, 2, 7, 7, 3, 5, 9, 0, 2, 4, 9, 2, 0, 0, 6, 0, 7, 3, 8, 3, 3, 1, 6, 9, 8, 7, 3, 5, 5, 8, 2, 2, 5, 5, 3, 5, 5, 6, 9, 3, 2, 7, 2, 3, 3, 1, 4, 4, 1, 6, 9, 4, 0, 9, 9, 6, 2, 2, 2, 7, 2, 2, 3, 6, 8, 0, 9, 8, 4, 8, 3, 0, 3, 8, 5, 9, 2, 2, 4, 8, 5, 2, 1, 1, 1, 1, 5, 7, 5, 4, 3
Offset: 0

Views

Author

Gleb Koloskov, Aug 09 2021

Keywords

Examples

			0.216577770436007277359024920060738331698735582255355693272331441694...
		

Crossrefs

Programs

  • Maple
    evalf(Integrate(LambertW(x)*LambertW(-1, x), x = -exp(-1)..0), 120); # Vaclav Kotesovec, Aug 23 2021
  • Mathematica
    N[Integrate[LambertW[x]*LambertW[-1,x],{x,-1/E,0}],120]
  • PARI
    11*exp(-1)-4+sumpos(n=1,(1/(1+1./n))^n/(n*(n+1)^2))

Formula

Equals Integral_{x=-1/e..0} LambertW(x)*LambertW(-1,x) dx.
Equals (3/e) - 1 + Sum_{n>0} (n^(n-1)/(n+1)^(n+2))*(Gamma(n+2,n+1)/Gamma(n+2)).
Equals (11/e)-4+Sum_{n>0} n^(n-1)/(n+1)^(n+2) = A135011-4+Sum_{n>0} A000169(n)/A007778(n+1).

A380747 Array read by ascending antidiagonals: A(n,k) = [x^n] (1 - x)/(1 - k*x)^2.

Original entry on oeis.org

1, -1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 8, 5, 1, 0, 1, 20, 21, 7, 1, 0, 1, 48, 81, 40, 9, 1, 0, 1, 112, 297, 208, 65, 11, 1, 0, 1, 256, 1053, 1024, 425, 96, 13, 1, 0, 1, 576, 3645, 4864, 2625, 756, 133, 15, 1, 0, 1, 1280, 12393, 22528, 15625, 5616, 1225, 176, 17, 1
Offset: 0

Views

Author

Stefano Spezia, Jan 31 2025

Keywords

Examples

			The array begins as:
   1, 1,   1,    1,     1,     1, ...
  -1, 1,   3,    5,     7,     9, ...
   0, 1,   8,   21,    40,    65, ...
   0, 1,  20,   81,   208,   425, ...
   0, 1,  48,  297,  1024,  2625, ...
   0, 1, 112, 1053,  4864, 15625, ...
   0, 1, 256, 3645, 22528, 90625, ...
   ...
		

Crossrefs

Cf. A000012 (k=1 or n=0), A000567 (n=2), A001792 (k=2), A007778, A060747 (n=1), A081038 (k=3), A081039 (k=4), A081040 (k=5), A081041 (k=6), A081042 (k=7), A081043 (k=8), A081044 (k=9), A081045 (k=10), A103532, A154955, A380748 (antidiagonal sums).

Programs

  • Mathematica
    A[0,0]:=1; A[1,0]:=-1; A[n_,k_]:=((k-1)*n+k)k^(n-1); Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten (* or *)
    A[n_,k_]:=SeriesCoefficient[(1-x)/(1-k*x)^2,{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten (* or *)
    A[n_,k_]:=n!SeriesCoefficient[Exp[k*x](1+(k-1)*x),{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten

Formula

A(n,k) = ((k - 1)*n + k)*k^(n-1) with A(0,0) = 1.
A(n,k) = n! * [x^n] exp(k*x)*(1 + (k - 1)*x).
A(n,0) = A154955(n+1).
A(3,n) = A103532(n-1) for n > 0.
A(n,n) = A007778(n) for n > 0.

A037184 Functional digraphs with 1 node not in the image.

Original entry on oeis.org

6, 48, 420, 3840, 38010, 407904, 4739112, 59405760, 800309070, 11542072080, 177536452236, 2902434644928, 50271450894210, 919799178083520, 17730187503894480, 359183503307677824, 7629999730919490582, 169605272611054951920, 3937616869933172881140
Offset: 3

Views

Author

Keywords

Comments

Comment from Christian G. Bower: Labeled graphs where every node has outdegree 1, one node has indegree 0, one node has indegree 2, all other nodes have indegree 1 and there are no loops of length 1.

Crossrefs

A000166 (derangements) gives number of functional digraphs with all nodes in the range, A007778 gives number of functional digraphs with n nodes.

Formula

a(n) = n * ( (n-2)*a(n-1) + (n-1)*a(n-2) ) / (n-3).
E.g.f.: x^3 / ((1-x)^3 * e^x).

A090650 n^(n+6).

Original entry on oeis.org

1, 256, 19683, 1048576, 48828125, 2176782336, 96889010407, 4398046511104, 205891132094649, 10000000000000000, 505447028499293771, 26623333280885243904, 1461920290375446110677, 83668255425284801560576
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Dec 13 2003

Keywords

Crossrefs

Programs

A122606 n^(n+1) mod 7.

Original entry on oeis.org

0, 1, 1, 4, 2, 1, 6, 0, 1, 2, 5, 1, 5, 1, 0, 1, 4, 1, 4, 4, 6, 0, 1, 1, 3, 2, 6, 1, 0, 1, 2, 2, 1, 2, 6, 0, 1, 4, 6, 4, 3, 1, 0, 1, 1, 4, 2, 1, 6, 0, 1, 2, 5, 1, 5, 1, 0, 1, 4, 1, 4, 4, 6, 0, 1, 1, 3, 2, 6, 1, 0, 1, 2, 2, 1, 2, 6, 0, 1, 4, 6, 4, 3, 1, 0, 1, 1, 4, 2, 1, 6, 0, 1, 2, 5, 1, 5, 1, 0, 1, 4, 1, 4, 4, 6
Offset: 0

Views

Author

Zak Seidov, Sep 24 2006, Sep 25 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Table[PowerMod[n,n+1,7],{n,0,120}] (* Harvey P. Dale, May 24 2012 *)

Formula

a(n) = n^(n+1) mod 7 = A007778(n) mod 7.
Periodic with cycle consisting of first 42 terms: {0,1,1,4,2,1,6,0,1,2,5,1,5,1,0,1,4,1,4,4,6,0,1,1,3,2,6,1,0,1,2,2,1,2,6,0,1,4,6,4,3,1}.

A134574 Array, a(n,k) = total size of all n-length words on a k-letter alphabet, read by antidiagonals.

Original entry on oeis.org

1, 2, 2, 3, 8, 3, 4, 24, 18, 4, 5, 64, 81, 32, 5, 6, 160, 324, 192, 50, 6, 7, 384, 1215, 1024, 375, 72, 7, 8, 896, 4374, 5120, 2500, 648, 98, 8, 9, 2048, 15309, 24576, 15625, 5184, 1029, 128, 9, 10, 4608, 52488, 114688, 93750, 38880, 9604, 1536, 162, 10
Offset: 1

Views

Author

Ross La Haye, Jan 22 2008

Keywords

Examples

			a(2,2) = 8 because there are 2^2 = 4 2-length words on a 2 letter alphabet, each of size 2 and 2*4 = 8.
Array begins:
==================================================================
n\k|  1     2       3        4         5         6          7  ...
---|--------------------------------------------------------------
1  |  1     2       3        4         5         6          7  ...
2  |  2     8      18       32        50        72         98  ...
3  |  3    24      81      192       375       648       1029  ...
4  |  4    64     324     1024      2500      5184       9604  ...
5  |  5   160    1215     5120     15625     38880      84035  ...
6  |  6   384    4374    24576     93750    279936     705894  ...
7  |  7   896   15309   114688    546875   1959552    5764801  ...
8  |  8  2048   52488   524288   3125000  13436928   46118408  ...
9  |  9  4608  177147  2359296  17578125  90699264  363182463  ...
... - _Franck Maminirina Ramaharo_, Aug 07 2018
		

Crossrefs

Cf. a(n, 1) = a(1, k) = A000027(n); a(n, 2) = A036289(n); a(n, 3) = A036290(n); a(n, 4) = A018215(n); a(n, 5) = A036291(n); a(n, 6) = A036292(n); a(n, 7) = A036293(n); a(n, 8) = A036294(n); a(2, k) = A001105(k); a(3, k) = A117642(k); a(n, n) = A007778(n); a(n, n+1) = A066274(n+1): sum[a(i-1, n-i+1), {i, 1, n}] = A062807(n).

Programs

  • Mathematica
    t[n_, k_] := Sum[k^n, {j, n}]; Table[ t[n - k + 1, k], {n, 10}, {k, n}] // Flatten (* Robert G. Wilson v, Aug 07 2018 *)

Formula

a(n,k) = n*k^n.
O.g.f. (by columns): (k*x)/(-1+k*x)^2.
E.g.f. (by columns): k*x*exp(k*x).
a(n,k) = Sum[k^n,{j,1,n}] = n*Sum[C(n,m)*(k-1)^m,{m,0,n}]. - Ross La Haye, Jan 26 2008

A173249 Partial sums of A000272.

Original entry on oeis.org

1, 2, 3, 6, 22, 147, 1443, 18250, 280394, 5063363, 105063363, 2463011054, 64380375278, 1856540769315, 58550453144611, 2004745521503986, 74062339559431922, 2936485391069247715, 124376016487663499491
Offset: 0

Views

Author

Jonathan Vos Post, Feb 13 2010

Keywords

Comments

Partial sums of number of trees on n labeled nodes. The subsequence of primes in this sequence begin: 2, 58550453144611, no more through a(30).

Examples

			a(19) = 1 + 1 + 1 + 3 + 16 + 125 + 1296 + 16807 + 262144 + 4782969 + 100000000 + 2357947691 + 61917364224 + 1792160394037 + 56693912375296 + 1946195068359375 + 72057594037927936 + 2862423051509815793 + 121439531096594251776 + 5480386857784802185939.
		

Crossrefs

Formula

a(n) = SUM[i=0..n] A000272(i) = SUM[i=0..n] i^(i-2).

A281620 Triangle read by rows: Poincaré polynomials of orbifold of Fermat hypersurfaces.

Original entry on oeis.org

1, 7, 1, 67, 13, 1, 821, 181, 21, 1, 12281, 2906, 406, 31, 1, 217015, 53719, 8359, 799, 43, 1, 4424071, 1129899, 188707, 20637, 1429, 57, 1, 102207817, 26710345, 4690249, 561481, 45385, 2377, 73, 1, 2639010709, 701908264, 127951984, 16349374, 1469026, 91216, 3736, 91, 1
Offset: 2

Views

Author

F. Chapoton, Jan 25 2017

Keywords

Examples

			The first few polynomials are 1; q + 7; q^2 + 13*q + 67; ...
Triangle begins:
        1;
        7,       1;
       67,      13,      1;
      821,     181,     21,     1;
    12281,    2906,    406,    31,    1;
   217015,   53719,   8359,   799,   43,  1;
  4424071, 1129899, 188707, 20637, 1429, 57, 1;
  ...
		

Crossrefs

Row sums give A007778(n-1), alternating row sums are A281596.

Programs

  • Maple
    T:= n-> (p-> seq(coeff(p, q, i), i=0..n-2))(add(add(n^j*
             binomial(n, j)*(-1)^(i+n+j)*binomial(n-2-j+1, i+1)*
             q^i, i=0..n-1-j), j=0..n-1)):
    seq(T(n), n=2..10);  # Alois P. Heinz, Jan 25 2017
    # Alternatively:
    t := n -> factor(((-n-x+1)^n+(x-1)*(1-n)^n-(-n)^n*x)*(-1)^n/((x-1)*x)):
    seq(seq(coeff(t(n),x,k),k=0..n-2),n=2..10); # Peter Luschny, Jan 26 2017
  • Mathematica
    T[n_] := ((-n-x+1)^n+(x-1)(1-n)^n-(-n)^n x) (-1)^n/((x-1) x); Table[CoefficientList[T[n],x],{n,2,10}] // Flatten (* Peter Luschny, Jan 26 2017 *)
  • Sage
    def fermat(n):
        q = polygen(ZZ, 'q')
        return sum(n**j * binomial(n, j) * (-1)**(i + n + j) *
                   binomial(n - 2 - j + 1, i + 1) * q**i
                   for j in range(n - 1)
                   for i in range(n - 1 - j))
    
  • Sage
    # Alternatively:
    def A281620_row(n):
        x = polygen(ZZ, 'x')
        p = (((-n-x+1)^n + (x-1)*(1-n)^n - (-n)^n*x)*(-1)^n)//((x-1)*x)
        return p.list()
    for n in (2..10): print(A281620_row(n)) # Peter Luschny, Jan 26 2017

Formula

The formula given by Okada needs to be corrected as follows:
Sum_{j=0..n-1} Sum_{i=0..n-1-j} n^j * binomial(n,j) * (-1)^(i+n+j) * binomial(n-2-j+1,i+1) * q^i.
From Peter Luschny, Jan 26 2017: (Start)
T(n,k) = [x^k] Sum_{j=0..n-1} t(j, n) for n>=2 and 0<=k<=n-2 with t(j,n) = (-1)^(j+n)*binomial(n,j)*(1-(1-x)^(n-1-j))*x^(-1)*n^j.
T(n,k) = [x^k] ((-n-x+1)^n+(x-1)*(1-n)^n-(-n)^n*x)*(-1)^n/((x-1)*x). (End)
Previous Showing 51-60 of 67 results. Next