A088815
Expansion of e.g.f. (1-x)^(-1/(1+log(1-x))).
Original entry on oeis.org
1, 1, 4, 24, 190, 1860, 21638, 291158, 4443556, 75779580, 1427272032, 29409572808, 657829667328, 15868725580344, 410543007882408, 11336582934052104, 332736828827893968, 10342443317857993680, 339343476195341474688
Offset: 0
-
With[{nn=20},CoefficientList[Series[(1-x)^(-1/(1+Log[1-x])), {x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Nov 29 2011 *)
-
x='x+O('x^25); Vec(serlaplace((1-x)^(-1/(1+log(1-x))))) \\ G. C. Greubel, Feb 16 2017
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, sum(k=0, j, k!*abs(stirling(j, k, 1)))*binomial(i-1, j-1)*v[i-j+1])); v; \\ Seiichi Manyama, May 23 2022
A215916
The total number of components (cycles) in all alignments.
Original entry on oeis.org
0, 1, 5, 32, 254, 2414, 26746, 338568, 4820952, 76270032, 1327263024, 25196689968, 518190651744, 11476753967184, 272339818023984, 6893370154797312, 185387657162396544, 5279022594143270784, 158674547929990485888, 5020389181983702415104, 166784921186052433648896
Offset: 0
-
nn = 20; a = Log[1/(1 - x)];Range[0, nn]! CoefficientList[
D[Series[1/(1 - y a), {x, 0, nn}], y] /. y -> 1, x]
-
my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(sum(k=0, N, k*(-log(1-x))^k)))) \\ Seiichi Manyama, Apr 22 2022
A305323
Expansion of e.g.f. 1/(1 + log(1 + log(1 - x))).
Original entry on oeis.org
1, 1, 4, 25, 211, 2238, 28560, 425808, 7261200, 139367278, 2973006344, 69775267186, 1786673529746, 49565881948204, 1480900541242572, 47407364553205448, 1618838460981098680, 58734896900587841824, 2256402484187691207152, 91499934912942249975504, 3905739517580787866827872
Offset: 0
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 25*x^3/3! + 211*x^4/4! + 2238*x^5/5! + 28560*x^6/6! + ...
-
S:= series(1/(1+log(1+log(1-x))),x,31):
seq(coeff(S,x,n)*n!,n=0..30); # Robert Israel, May 31 2018
-
nmax = 20; CoefficientList[Series[1/(1 + Log[1 + Log[1 - x]]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Sum[(j - 1)! Abs[StirlingS1[k, j]], {j, 1, k}] a[n - k]/k!, {k, 1, n}]; Table[n! a[n], {n, 0, 20}]
-
x = 'x + O('x^30); Vec(serlaplace(1/(1 + log(1 + log(1 - x))))) \\ Michel Marcus, May 31 2018
A305988
Expansion of e.g.f. 1/(1 + log(2 - exp(x))).
Original entry on oeis.org
1, 1, 4, 24, 194, 1970, 24062, 343294, 5601122, 102847794, 2098766582, 47117285270, 1154031484586, 30622256174458, 875092190716382, 26794239236959806, 875110094707912562, 30367988674208286914, 1115822099409002188358, 43276913813553367194598, 1766830322476935945014330
Offset: 0
1/(1 + log(2 - exp(x))) = 1 + x + 4*x^2/2! + 24*x^3/3! + 194*x^4/4! + 1970*x^5/5! + 24062*x^6/6! + ...
-
b:= proc(n) b(n):= n!*`if`(n=0, 1, add(b(k)/(k!*(n-k)), k=0..n-1)) end:
a:= n-> add(Stirling2(n, j)*b(j$2), j=0..n):
seq(a(n), n=0..25); # Alois P. Heinz, Jun 15 2018
-
nmax = 20; CoefficientList[Series[1/(1 + Log[2 - Exp[x]]), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Sum[StirlingS2[n, k] Abs[StirlingS1[k, j]] j!, {j, 0, k}], {k, 0, n}], {n, 0, 20}]
A317171
a(n) = n! * [x^n] 1/(1 + n*log(1 - x)).
Original entry on oeis.org
1, 1, 10, 222, 8824, 553870, 50545008, 6328330344, 1041597412224, 218138133235680, 56650689388344000, 17868469522986145536, 6728682216722958185472, 2981868816113406609186576, 1536217706761623823662025728, 910442461680276910819097616000, 615053979239579281793375485526016
Offset: 0
-
Table[n! SeriesCoefficient[1/(1 + n Log[1 - x]), {x, 0, n}], {n, 0, 16}]
Join[{1}, Table[Sum[Abs[StirlingS1[n, k]] n^k k!, {k, n}], {n, 16}]]
A351137
a(n) = Sum_{k=0..n} (-1)^(n-k) * k! * k^(3*n) * Stirling1(n,k).
Original entry on oeis.org
1, 1, 129, 121172, 421875178, 3922823960054, 80130334773241142, 3156849112458066440568, 218554371053209725986724984, 24795129220015277612148345850896, 4365539219231132131300647267518575008, 1141930521329052244894253748456776246166288
Offset: 0
-
a[0] = 1; a[n_] := Sum[(-1)^(n - k) * k! * k^(3*n) * StirlingS1[n, k], {k, 1, n}]; Array[a, 12, 0] (* Amiram Eldar, Feb 02 2022 *)
-
a(n) = sum(k=0, n, (-1)^(n-k)*k!*k^(3*n)*stirling(n, k, 1));
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-log(1-k^3*x))^k)))
A351138
a(n) = Sum_{k=0..n} (-1)^(n-k) * k! * k^(k*n) * Stirling1(n,k).
Original entry on oeis.org
1, 1, 33, 118484, 103098352618, 35763050751038414134, 7426387531294394110580641088438, 1294894837982331434068068403253026516109577144, 253092742000650212462862632240661689524832716838851180353875064
Offset: 0
-
a[0] = 1; a[n_] := Sum[(-1)^(n - k) * k! * k^(k*n) * StirlingS1[n, k], {k, 1, n}]; Array[a, 9, 0] (* Amiram Eldar, Feb 02 2022 *)
-
a(n) = sum(k=0, n, (-1)^(n-k)*k!*k^(k*n)*stirling(n, k, 1));
-
my(N=10, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-log(1-k^k*x))^k)))
A352071
Expansion of e.g.f. 1 / (1 + log(1 - 4*x) / 4).
Original entry on oeis.org
1, 1, 6, 62, 904, 16984, 390128, 10586736, 331267200, 11738697600, 464539452672, 20302660659456, 971106358760448, 50452643588275200, 2829000818124208128, 170271405502300207104, 10948525752699316371456, 748994717201835804033024, 54315931193865932254543872
Offset: 0
-
nmax = 18; CoefficientList[Series[1/(1 + Log[1 - 4 x]/4), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] k! (-4)^(n - k), {k, 0, n}], {n, 0, 18}]
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1+log(1-4*x)/4))) \\ Michel Marcus, Mar 02 2022
A355087
E.g.f. A(x) satisfies A(x) = 1 - log(1-x) * A(3*x).
Original entry on oeis.org
1, 1, 7, 200, 22008, 8968614, 13103201154, 66911528280456, 1170951806182816008, 69148802888161984160496, 13610904625275511792310726256, 8840888240006182011615570947541552, 18793694994107665289261434484161549856688
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, 3^(i-j)*(j-1)!*binomial(i, j)*v[i-j+1])); v;
A355284
Expansion of e.g.f. 1 / (1 + x + x^2/2 + log(1 - x)).
Original entry on oeis.org
1, 0, 0, 2, 6, 24, 200, 1560, 12936, 130368, 1458432, 17623440, 233922480, 3376625472, 52382131776, 870882440064, 15459372915840, 291596692838400, 5824039155720192, 122814724467223296, 2726547887891407104, 63562453551393223680, 1552499303360183700480
Offset: 0
-
nmax = 22; CoefficientList[Series[1/(1 + x + x^2/2 + Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] (k - 1)! a[n - k], {k, 3, n}]; Table[a[n], {n, 0, 22}]
-
my(x='x+O('x^30)); Vec(serlaplace(1/(1 + x + x^2/2 + log(1 - x)))) \\ Michel Marcus, Jun 27 2022
Comments