cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 104 results. Next

A088815 Expansion of e.g.f. (1-x)^(-1/(1+log(1-x))).

Original entry on oeis.org

1, 1, 4, 24, 190, 1860, 21638, 291158, 4443556, 75779580, 1427272032, 29409572808, 657829667328, 15868725580344, 410543007882408, 11336582934052104, 332736828827893968, 10342443317857993680, 339343476195341474688
Offset: 0

Views

Author

Vladeta Jovovic, Nov 22 2003

Keywords

Crossrefs

Row sums of A079640.

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[(1-x)^(-1/(1+Log[1-x])), {x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Nov 29 2011 *)
  • PARI
    x='x+O('x^25); Vec(serlaplace((1-x)^(-1/(1+log(1-x))))) \\ G. C. Greubel, Feb 16 2017
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, sum(k=0, j, k!*abs(stirling(j, k, 1)))*binomial(i-1, j-1)*v[i-j+1])); v; \\ Seiichi Manyama, May 23 2022

Formula

a(n) = Sum_{k=0..n} |Stirling1(n, k)|*A000262(k). - Vladeta Jovovic, Nov 26 2003
a(n) ~ n! * exp(n + 2*sqrt(n)/sqrt(exp(1)-1) + 1/(2*(exp(1)-1)) - 1/2) / (2*sqrt(Pi) * (exp(1)-1)^(n+1/4) * n^(3/4)). - Vaclav Kotesovec, May 04 2015
a(0) = 1; a(n) = Sum_{k=1..n} A007840(k) * binomial(n-1,k-1) * a(n-k). - Seiichi Manyama, May 23 2022

A215916 The total number of components (cycles) in all alignments.

Original entry on oeis.org

0, 1, 5, 32, 254, 2414, 26746, 338568, 4820952, 76270032, 1327263024, 25196689968, 518190651744, 11476753967184, 272339818023984, 6893370154797312, 185387657162396544, 5279022594143270784, 158674547929990485888, 5020389181983702415104, 166784921186052433648896
Offset: 0

Views

Author

Geoffrey Critzer, Aug 27 2012

Keywords

Comments

An alignment is a sequence of cycles of an n-permutation, cf. A007840.

Crossrefs

Programs

  • Mathematica
    nn = 20; a = Log[1/(1 - x)];Range[0, nn]! CoefficientList[
      D[Series[1/(1 - y a), {x, 0, nn}], y] /. y -> 1, x]
  • PARI
    my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(sum(k=0, N, k*(-log(1-x))^k)))) \\ Seiichi Manyama, Apr 22 2022

Formula

a(n) = Sum_{k=1...n} s(n,k)*k!*k where s(n,k) is the unsigned Stirling number of the first kind (A132393).
E.g.f.: log(1/(1-x))/(1-log(1/(1-x)))^2.
a(n) ~ n!*n*exp(n)/(exp(1)-1)^(n+2) . - Vaclav Kotesovec, Sep 24 2013
E.g.f.: Sum_{k>=0} k * (-log(1-x))^k. - Seiichi Manyama, Apr 22 2022

A305323 Expansion of e.g.f. 1/(1 + log(1 + log(1 - x))).

Original entry on oeis.org

1, 1, 4, 25, 211, 2238, 28560, 425808, 7261200, 139367278, 2973006344, 69775267186, 1786673529746, 49565881948204, 1480900541242572, 47407364553205448, 1618838460981098680, 58734896900587841824, 2256402484187691207152, 91499934912942249975504, 3905739517580787866827872
Offset: 0

Views

Author

Ilya Gutkovskiy, May 30 2018

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 4*x^2/2! + 25*x^3/3! + 211*x^4/4! + 2238*x^5/5! + 28560*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    S:= series(1/(1+log(1+log(1-x))),x,31):
    seq(coeff(S,x,n)*n!,n=0..30); # Robert Israel, May 31 2018
  • Mathematica
    nmax = 20; CoefficientList[Series[1/(1 + Log[1 + Log[1 - x]]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Sum[(j - 1)! Abs[StirlingS1[k, j]], {j, 1, k}] a[n - k]/k!, {k, 1, n}]; Table[n! a[n], {n, 0, 20}]
  • PARI
    x = 'x + O('x^30); Vec(serlaplace(1/(1 + log(1 + log(1 - x))))) \\ Michel Marcus, May 31 2018

Formula

a(n) ~ n! / (exp(2 - exp(-1)) * (1 - exp(exp(-1) - 1))^(n+1)). - Vaclav Kotesovec, May 31 2018
a(n) = Sum_{k=0..n} |Stirling1(n,k)| * A007840(k). - Seiichi Manyama, May 11 2023

A305988 Expansion of e.g.f. 1/(1 + log(2 - exp(x))).

Original entry on oeis.org

1, 1, 4, 24, 194, 1970, 24062, 343294, 5601122, 102847794, 2098766582, 47117285270, 1154031484586, 30622256174458, 875092190716382, 26794239236959806, 875110094707912562, 30367988674208286914, 1115822099409002188358, 43276913813553367194598, 1766830322476935945014330
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 15 2018

Keywords

Comments

Stirling transform of A007840.

Examples

			1/(1 + log(2 - exp(x))) = 1 + x + 4*x^2/2! + 24*x^3/3! + 194*x^4/4! + 1970*x^5/5! + 24062*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n) b(n):= n!*`if`(n=0, 1, add(b(k)/(k!*(n-k)), k=0..n-1)) end:
    a:= n-> add(Stirling2(n, j)*b(j$2), j=0..n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jun 15 2018
  • Mathematica
    nmax = 20; CoefficientList[Series[1/(1 + Log[2 - Exp[x]]), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[Sum[StirlingS2[n, k] Abs[StirlingS1[k, j]] j!, {j, 0, k}], {k, 0, n}], {n, 0, 20}]

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k)*A007840(k).
a(n) ~ n! / ((2*exp(1) - 1) * (log(2 - exp(-1)))^(n+1)). - Vaclav Kotesovec, Jul 01 2018

A317171 a(n) = n! * [x^n] 1/(1 + n*log(1 - x)).

Original entry on oeis.org

1, 1, 10, 222, 8824, 553870, 50545008, 6328330344, 1041597412224, 218138133235680, 56650689388344000, 17868469522986145536, 6728682216722958185472, 2981868816113406609186576, 1536217706761623823662025728, 910442461680276910819097616000, 615053979239579281793375485526016
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 23 2018

Keywords

Crossrefs

Main diagonal of A320079.

Programs

  • Mathematica
    Table[n! SeriesCoefficient[1/(1 + n Log[1 - x]), {x, 0, n}], {n, 0, 16}]
    Join[{1}, Table[Sum[Abs[StirlingS1[n, k]] n^k k!, {k, n}], {n, 16}]]

Formula

a(n) = Sum_{k=0..n} |Stirling1(n,k)|*n^k*k!.
a(n) ~ sqrt(2*Pi) * n^(2*n + 1/2) / exp(n - 1/2). - Vaclav Kotesovec, Jul 23 2018

A351137 a(n) = Sum_{k=0..n} (-1)^(n-k) * k! * k^(3*n) * Stirling1(n,k).

Original entry on oeis.org

1, 1, 129, 121172, 421875178, 3922823960054, 80130334773241142, 3156849112458066440568, 218554371053209725986724984, 24795129220015277612148345850896, 4365539219231132131300647267518575008, 1141930521329052244894253748456776246166288
Offset: 0

Views

Author

Seiichi Manyama, Feb 02 2022

Keywords

Comments

In general, for m >= 0, Sum_{k=0..n} (-1)^(n-k) * k! * k^(m*n) * Stirling1(n,k) ~ c * r^(m*n) * (1 + r*exp(m/r))^n * n^((m+1)*n + 1/2) / exp((m+1)*n), where r is the real root of the equation LambertW(-1, -r*exp(-r)) = -r - exp(-m/r) and c is a constant (depending only on m). - Vaclav Kotesovec, Feb 04 2022

Crossrefs

Cf. A007840 (m=0), A320096 (m=1), A351136 (m=2).

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[(-1)^(n - k) * k! * k^(3*n) * StirlingS1[n, k], {k, 1, n}]; Array[a, 12, 0] (* Amiram Eldar, Feb 02 2022 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*k!*k^(3*n)*stirling(n, k, 1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-log(1-k^3*x))^k)))

Formula

E.g.f.: Sum_{k>=0} (-log(1 - k^3*x))^k.
a(n) ~ c * r^(3*n) * (1 + r*exp(3/r))^n * n^(4*n + 1/2) / exp(4*n), where r = 0.97698437755148201976772582981871258235824532360125531194... is the real root of the equation LambertW(-1, -r*exp(-r)) = -r - exp(-3/r) and c = 2.3655154360078103511101518906595610482889989819... - Vaclav Kotesovec, Feb 04 2022

A351138 a(n) = Sum_{k=0..n} (-1)^(n-k) * k! * k^(k*n) * Stirling1(n,k).

Original entry on oeis.org

1, 1, 33, 118484, 103098352618, 35763050751038414134, 7426387531294394110580641088438, 1294894837982331434068068403253026516109577144, 253092742000650212462862632240661689524832716838851180353875064
Offset: 0

Views

Author

Seiichi Manyama, Feb 02 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[(-1)^(n - k) * k! * k^(k*n) * StirlingS1[n, k], {k, 1, n}]; Array[a, 9, 0] (* Amiram Eldar, Feb 02 2022 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*k!*k^(k*n)*stirling(n, k, 1));
    
  • PARI
    my(N=10, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-log(1-k^k*x))^k)))

Formula

E.g.f.: Sum_{k>=0} (-log(1 - k^k*x))^k.
a(n) ~ n! * n^(n^2). - Vaclav Kotesovec, Feb 03 2022

A352071 Expansion of e.g.f. 1 / (1 + log(1 - 4*x) / 4).

Original entry on oeis.org

1, 1, 6, 62, 904, 16984, 390128, 10586736, 331267200, 11738697600, 464539452672, 20302660659456, 971106358760448, 50452643588275200, 2829000818124208128, 170271405502300207104, 10948525752699316371456, 748994717201835804033024, 54315931193865932254543872
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 02 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 18; CoefficientList[Series[1/(1 + Log[1 - 4 x]/4), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[StirlingS1[n, k] k! (-4)^(n - k), {k, 0, n}], {n, 0, 18}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1+log(1-4*x)/4))) \\ Michel Marcus, Mar 02 2022

Formula

a(n) = Sum_{k=0..n} Stirling1(n,k) * k! * (-4)^(n-k).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * (k-1)! * 4^(k-1) * a(n-k).
a(n) ~ n! * 4^(n+1) * exp(4*n) / (exp(4) - 1)^(n+1). - Vaclav Kotesovec, Mar 03 2022

A355087 E.g.f. A(x) satisfies A(x) = 1 - log(1-x) * A(3*x).

Original entry on oeis.org

1, 1, 7, 200, 22008, 8968614, 13103201154, 66911528280456, 1170951806182816008, 69148802888161984160496, 13610904625275511792310726256, 8840888240006182011615570947541552, 18793694994107665289261434484161549856688
Offset: 0

Views

Author

Seiichi Manyama, Jun 18 2022

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, 3^(i-j)*(j-1)!*binomial(i, j)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..n} 3^(n-k) * (k-1)! * binomial(n,k) * a(n-k).

A355284 Expansion of e.g.f. 1 / (1 + x + x^2/2 + log(1 - x)).

Original entry on oeis.org

1, 0, 0, 2, 6, 24, 200, 1560, 12936, 130368, 1458432, 17623440, 233922480, 3376625472, 52382131776, 870882440064, 15459372915840, 291596692838400, 5824039155720192, 122814724467223296, 2726547887891407104, 63562453551393223680, 1552499303360183700480
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 26 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[1/(1 + x + x^2/2 + Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] (k - 1)! a[n - k], {k, 3, n}]; Table[a[n], {n, 0, 22}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(1/(1 + x + x^2/2 + log(1 - x)))) \\ Michel Marcus, Jun 27 2022

Formula

E.g.f.: 1 / (1 - Sum_{k>=3} x^k/k).
a(0) = 1; a(n) = Sum_{k=3..n} binomial(n,k) * (k-1)! * a(n-k).
Previous Showing 41-50 of 104 results. Next