cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A271832 Period 12 zigzag sequence: repeat [0,1,2,3,4,5,6,5,4,3,2,1].

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 1
Offset: 0

Views

Author

Wesley Ivan Hurt, Apr 15 2016

Keywords

Comments

a(n)/36 is the probability that the sum shown after rolling a pair of standard dice is 1+(n mod 12). - Mathew Englander, Jul 11 2022
Decimal expansion of 37037/3000003. - Elmo R. Oliveira, Mar 03 2024

Crossrefs

Period k zigzag sequences: A000035 (k=2), A007877 (k=4), A260686 (k=6), A266313 (k=8), A271751 (k=10), this sequence (k=12), A279313 (k=14), A279319 (k=16), A158289 (k=18).

Programs

  • Magma
    &cat[[0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1]: n in [0..10]];
    
  • Maple
    A271832:=n->[0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1][(n mod 12)+1]: seq(A271832(n), n=0..300);
  • Mathematica
    CoefficientList[Series[x*(1 + x + x^2 + x^3 + x^4 + x^5)/(1 - x + x^6 - x^7), {x, 0, 100}], x]
  • PARI
    lista(nn) = for(n=0, nn, print1(abs(n-12*round(n/12)), ", ")); \\ Altug Alkan, Apr 15 2016

Formula

G.f.: x*(1 + x + x^2 + x^3 + x^4 + x^5)/(1 - x + x^6 - x^7).
a(n) = a(n-1) - a(n-6) + a(n-7) for n>6.
a(n) = abs(n - 12*round(n/12)).
a(n) = Sum_{i=1..n} (-1)^floor((i-1)/6).
a(2n) = a(10n) = 2*A260686(n), a(2n+1) = A110551(n).
a(3n) = 3*A007877(n), a(4n) = a(8n) = 4*A011655(n).
a(6n) = A010677(n) = 6*A000035(n).
a(n) = a(n-12) for n >= 12. - Wesley Ivan Hurt, Sep 07 2022

A266313 Period 8 zigzag sequence; repeat [0, 1, 2, 3, 4, 3, 2, 1].

Original entry on oeis.org

0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3
Offset: 0

Views

Author

Wesley Ivan Hurt, Dec 26 2015

Keywords

Comments

Decimal expansion of 1111/90009. - Elmo R. Oliveira, Mar 03 2024

Examples

			G.f. = x + 2*x^2 + 3*x^3 + 4*x^4 + 3*x^5 + 2*x^6 + x^7 + x^9 + ... - _Michael Somos_, Feb 27 2020
		

Crossrefs

Period k zigzag sequences: A000035 (k=2), A007877 (k=4), A260686 (k=6), this sequence (k=8), A271751 (k=10), A271832 (k=12), A279313 (k=14), A279319 (k=16), A158289 (k=18).
Cf. A084101.

Programs

  • Magma
    &cat[[0, 1, 2, 3, 4, 3, 2, 1]: n in [0..10]];
    
  • Maple
    A266313:=n->[0, 1, 2, 3, 4, 3, 2, 1][(n mod 8)+1]: seq(A266313(n), n=0..100);
  • Mathematica
    CoefficientList[Series[x*(1 + x + x^2 + x^3)/(1 - x + x^4 - x^5), {x, 0, 100}], x]
  • PARI
    x='x+O('x^100); concat(0, Vec(x*(1+x+x^2+x^3)/(1-x+x^4-x^5))) \\ Altug Alkan, Dec 29 2015
    
  • PARI
    {a(n) = abs((n+4)\8*8-n)}; /* Michael Somos, Feb 27 2020 */

Formula

G.f.: x*(1+x+x^2+x^3)/(1-x+x^4-x^5).
a(n) = a(n-1) - a(n-4) + a(n-5) for n > 4.
a(n) = Sum_{i = 1..n} (-1)^floor((i-1)/4).
a(2n) = 2*A007877(n); a(2n+1) = A084101(n).
a(n) = abs(n - 8*round(n/8)). - Jon E. Schoenfield, Jan 01 2016
Euler transform of length 8 sequence [2, 0, 0, -2, 0, 0, 0, 1]. - Michael Somos, Feb 27 2020
a(n) = a(n-8) for n >= 8. - Wesley Ivan Hurt, Sep 07 2022

A279319 Period 16 zigzag sequence: repeat [0,1,2,3,4,5,6,7,8,7,6,5,4,3,2,1].

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5
Offset: 0

Views

Author

Wesley Ivan Hurt, Dec 09 2016

Keywords

Comments

Decimal expansion of 11111111/900000009. - Elmo R. Oliveira, Feb 20 2024

Crossrefs

Period k zigzag sequences: A000035 (k=2), A007877 (k=4), A260686 (k=6), A266313 (k=8), A271751 (k=10), A271832 (k=12), A279313 (k=14), this sequence (k=16), A158289 (k=18).

Programs

  • Magma
    &cat[[0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1]: n in [0..5]];
    
  • Mathematica
    PadRight[{}, 120, {0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1}] (* Vincenzo Librandi, Dec 10 2016 *)
    With[{k = 16}, Table[Min[Abs[# - k], #] &@ Mod[n, k], {n, 0, 120}]] (* or *)
    CoefficientList[Series[x (1 + x) (1 + x^2) (1 + x^4)/((1 - x) (1 + x^8)), {x, 0, 120}], x] (* Michael De Vlieger, Dec 10 2016 *)
  • Python
    def A279319(n): return (0,1,2,3,4,5,6,7,8,7,6,5,4,3,2,1)[n&15] # Chai Wah Wu, Mar 02 2023

Formula

a(n) = abs(n - 16*round(n/16)).
G.f.: x*(1 + x)*(1 + x^2)*(1 + x^4)/((1 - x)*(1 + x^8)). - Ilya Gutkovskiy, Dec 10 2016
a(n) = a(n-1)-a(n-8)+a(n-9). - Wesley Ivan Hurt, Nov 18 2021
a(n) = a(n-16) for n >= 16. - Wesley Ivan Hurt, Sep 07 2022

A098178 Expansion of (1+x)(1-x+x^2)/((1-x)(1+x^2)).

Original entry on oeis.org

1, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2
Offset: 0

Views

Author

Paul Barry, Aug 30 2004

Keywords

Comments

Transform of A011782 under the Chebyshev mapping g(x)-> ((1-x^2)/(1+x^2)) * g(x/(1+x^2)).
Binomial transform is A098179.
Multiplicative with a(2) = 0, a(2^e) = 2 if e >= 2, a(p^e) = 1. [David W. Wilson, Jun 12 2005]
1, followed by period 4, repeat [1, 0, 1, 2]. [Joerg Arndt, Jan 06 2014]

Crossrefs

Programs

  • Magma
    [1] cat &cat [[1, 0, 1, 2]^^30]; // Wesley Ivan Hurt, Jul 07 2016
  • Maple
    with(numtheory); A098178:=n->signum(n)-1+sqrt((n-2)^2 mod 8); seq(A098178(n), n=0..100); # Wesley Ivan Hurt, Jan 04 2014
  • Mathematica
    CoefficientList[Series[(1+x)(1-x+x^2)/((1-x)(1+x^2)),{x,0,120}],x] (* or *) PadRight[{1},120,{2,1,0,1}] (* Harvey P. Dale, May 01 2013 *)
    Table[Sign[n] - 1 + Sqrt[Mod[(n - 2)^2, 8]], {n, 0, 100}] (* Wesley Ivan Hurt, Jan 04 2014 *)
    Join[{1},LinearRecurrence[{1, -1, 1},{1, 0, 1},104]] (* Ray Chandler, Sep 03 2015 *)

Formula

G.f.: (1+x)(1-x+x^2)/((1-x)(1+x^2)).
a(n) = 1 + cos(Pi*n/2) - 0^n.
a(n) = a(n-1) - a(n-2) + a(n-3) for n>2.
a(n) = A007877(n+2), n>0. Dirichlet g.f. (1-1/2^s+2/4^s)*zeta(s). - R. J. Mathar, Feb 24 2011
a(n) = sign(n) - 1 + sqrt((n-2)^2 mod 8). - Wesley Ivan Hurt, Jan 04 2014
a(n) = a(n-4) for n>4. - Wesley Ivan Hurt, Jul 07 2016
E.g.f.: exp(x) + cos(x) - 1. - Ilya Gutkovskiy, Jul 07 2016

A098181 Two consecutive odd numbers separated by multiples of four, repeated twice, between them, written in increasing order.

Original entry on oeis.org

1, 3, 4, 4, 5, 7, 8, 8, 9, 11, 12, 12, 13, 15, 16, 16, 17, 19, 20, 20, 21, 23, 24, 24, 25, 27, 28, 28, 29, 31, 32, 32, 33, 35, 36, 36, 37, 39, 40, 40, 41, 43, 44, 44, 45, 47, 48, 48, 49, 51, 52, 52, 53, 55, 56, 56, 57, 59, 60, 60, 61, 63, 64, 64, 65, 67, 68, 68, 69, 71, 72, 72
Offset: 0

Views

Author

Paul Barry, Aug 30 2004

Keywords

Comments

Essentially partial sums of A007877.
a(n) is the number of odd coefficients of the q-binomial coefficient [n+2 choose 2]. (Easy to prove.) - Richard Stanley, Oct 12 2016

Examples

			G.f. = 1 + 3*x + 4*x^2 + 4*x^3 + 5*x^4 + 7*x^5 + 8*x^6 + 8*x^7 + 9*x^8 + ...
		

Crossrefs

Cf. A098180.

Programs

  • GAP
    a:=[1,3,4,4];; for n in [5..80] do a[n]:=2*a[n-1]-2*a[n-2]+2*a[n-3] -a[n-4]; od; a; # G. C. Greubel, May 22 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 80); Coefficients(R!( (1+x)/((1-x)^2*(1+x^2)) )); // G. C. Greubel, May 22 2019
    
  • Maple
    A:=seq((2*n+3 - cos(Pi*n/2) + sin(Pi*n/2))/2, n=0..50); \\ Bernard Schott, Jun 07 2019
  • Mathematica
    Table[Floor[Binomial[n+3, 2]/2] -Floor[Binomial[n+1, 2]/2], {n, 0, 80}] (* or *) CoefficientList[Series[(1+x)/((1-x)^2*(1+x^2)), {x, 0, 80}], x] (* Michael De Vlieger, Oct 12 2016 *)
  • PARI
    {a(n) = n\4*4 + [1, 3, 4, 4][n%4+1]}; /* Michael Somos, Sep 11 2014 */
    
  • Sage
    ((1+x)/((1-x)^2*(1+x^2))).series(x, 80).coefficients(x, sparse=False) # G. C. Greubel, May 22 2019
    

Formula

G.f.: (1+x)/((1-x)^2*(1+x^2)).
a(n) = ( (2*n+3) - cos(Pi*n/2) + sin(Pi*n/2) )/2.
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4).
a(n) = floor(C(n+3, 2)/2)-floor(C(n+1, 2)/2). - Paul Barry, Jan 01 2005
a(4*n) = 4*n+1, a(4*n+1) = 4*n+3, a(4*n+2) = a(4*n+3) = 4*n+4. - Philippe Deléham, Apr 06 2007
Euler transform of length 4 sequence [ 3, -2, 0, 1]. - Michael Somos, Sep 11 2014
a(-3-n) = -a(n) for all n in Z. - Michael Somos, Sep 11 2014
a(n) = log_2(|A174882(n+2)|). [Barry] - R. J. Mathar, Aug 18 2017
a(n) = (2*n+3 - (-1)^ceiling(n/2))/2. - Wesley Ivan Hurt, Sep 29 2017

Extensions

Name edited by G. C. Greubel, Jun 06 2019

A084104 A period 6 sequence.

Original entry on oeis.org

1, 4, 7, 7, 4, 1, 1, 4, 7, 7, 4, 1, 1, 4, 7, 7, 4, 1, 1, 4, 7, 7, 4, 1, 1, 4, 7, 7, 4, 1, 1, 4, 7, 7, 4, 1, 1, 4, 7, 7, 4, 1, 1, 4, 7, 7, 4, 1, 1, 4, 7, 7, 4, 1, 1, 4, 7, 7, 4, 1, 1, 4, 7, 7, 4, 1, 1, 4, 7, 7, 4, 1, 1, 4, 7, 7, 4, 1, 1, 4, 7, 7, 4, 1, 1, 4, 7, 7, 4, 1, 1, 4, 7, 7, 4, 1, 1, 4, 7, 7, 4, 1, 1, 4, 7
Offset: 0

Views

Author

Paul Barry, May 15 2003

Keywords

Comments

Partial sums of A084103.

Crossrefs

Programs

  • PARI
    {a(n)=[1, 4, 7, 7, 4, 1][n%6+1]}
    
  • PARI
    a(n)=2*sqrt(3)*sin((n+5)*Pi/3)+4 \\ Jaume Oliver Lafont, Aug 27 2009

Formula

Euler transform of length 6 sequence [ 4, -3, -1, 0, 0, 1]. - Michael Somos, Nov 07 2006
G.f.: (1+x)^3/((1-x)(1+x^3)).
G.f.:(1+x)^2/((1-x)*(1-x+x^2)). - Jaume Oliver Lafont, Aug 27 2009

A293296 a(n) = 2*n^2 - floor(n/4).

Original entry on oeis.org

0, 2, 8, 18, 31, 49, 71, 97, 126, 160, 198, 240, 285, 335, 389, 447, 508, 574, 644, 718, 795, 877, 963, 1053, 1146, 1244, 1346, 1452, 1561, 1675, 1793, 1915, 2040, 2170, 2304, 2442, 2583, 2729, 2879, 3033, 3190, 3352, 3518, 3688, 3861, 4039, 4221, 4407, 4596
Offset: 0

Views

Author

Peter Luschny, Oct 08 2017

Keywords

Crossrefs

Programs

  • Maple
    a := n -> 2*n^2 - floor(n/4): seq(a(n), n=0..48);
  • Mathematica
    LinearRecurrence[{2, -1, 0, 1, -2, 1}, {0, 2, 8, 18, 31, 49}, 49]
    Table[2n^2-Floor[n/4],{n,0,60}] (* Harvey P. Dale, Jan 08 2022 *)
  • PARI
    a(n) = 2*n^2-n\4; \\ Altug Alkan, Oct 08 2017
    
  • Python
    def A293296(n): return (n**2<<1)-(n>>2) # Chai Wah Wu, Jan 26 2023

Formula

a(n) = [x^n] (-x*(2+4*x+4*x^2+3*x^3+3*x^4)/((x+1)*(x^2+1)*(x-1)^3)).
a(n) = n! [x^n] (3*exp(x)-exp(-x)+14*exp(x)*x+16*exp(x)*x^2-2*cos(x)-2*sin(x))/8.
a(n) = a(n-6) - 2*a(n-5) + a(n-4) - a(n-2) + 2*a(n-1) for n >= 6.
(-1)^n*(a(n+3) - 3*a(n+2) + 3*a(n+1) - a(n)) = sqrt(n^2 mod 8) = A007877(n).

A104563 A floretion-generated sequence relating to centered square numbers.

Original entry on oeis.org

0, 1, 3, 5, 8, 13, 19, 25, 32, 41, 51, 61, 72, 85, 99, 113, 128, 145, 163, 181, 200, 221, 243, 265, 288, 313, 339, 365, 392, 421, 451, 481, 512, 545, 579, 613, 648, 685, 723, 761, 800, 841, 883, 925, 968, 1013, 1059, 1105, 1152, 1201, 1251
Offset: 0

Views

Author

Creighton Dement, Mar 15 2005

Keywords

Comments

Floretion Algebra Multiplication Program, FAMP Code: a(n) = 1vesrokseq[A*B] with A = - .5'i - .5i' + .5'ii' + .5e, B = + .5'ii' - .5'jj' + .5'kk' + .5e. RokType: Y[sqa.Findk()] = Y[sqa.Findk()] + Math.signum(Y[sqa.Findk()])*p (internal program code). Note: many slight variations of the "RokType" already exist, such that it has become difficult to assign them all names.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, -4, 4, -3, 1}, {0, 1, 3, 5, 8}, 60] (* Amiram Eldar, Dec 14 2024 *)
  • PARI
    concat(0, Vec(x*(1 + x)*(1 - x + x^2) / ((1 - x)^3*(1 + x^2)) + O(x^40))) \\ Colin Barker, Apr 29 2019

Formula

G.f.: x*(1 + x^3)/((1 + x^2)*(1 - x)^3).
FAMP result: 2*a(n) + 2*A004525(n+1) = A104564(n) + a(n+1).
Superseeker results:
a(2*n+1) = A001844(n) = 2*n*(n+1) + 1 (Centered square numbers);
a(n+1) - a(n) = A098180(n) (Odd numbers with two times the odd numbers repeated in order between them);
a(n) + a(n+2) = A059100(n+1) = A010000(n+1);
a(n+2) - a(n) = A047599(n+1) (Numbers that are congruent to {0, 3, 4, 5} mod 8);
a(n+2) - 2*a(n+1) + a(n) = A007877(n+3) (Period 4 sequence with initial period (0, 1, 2, 1));
Coefficients of g.f.*(1-x)/(1+x) = convolution of this with A280560 gives A004525;
Coefficients of g.f./(1+x) = convolution of this with A033999 gives A054925.
a(n) = (1/2)*(n^2 + 1 - cos(n*Pi/2)). - Ralf Stephan, May 20 2007
From Colin Barker, Apr 29 2019: (Start)
a(n) = (2 - (-i)^n - i^n + 2*n^2) / 4 where i=sqrt(-1).
a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5) for n>4. (End)
a(n) = A011848(n-1)+A011848(n+2). - R. J. Mathar, Sep 11 2019
Sum_{n>=1} 1/a(n) = Pi^2/48 + (Pi/2) * tanh(Pi/2) + (Pi/(4*sqrt(2)) * tanh(Pi/(2*sqrt(2)))). - Amiram Eldar, Dec 14 2024

Extensions

Stephan's formula corrected by Bruno Berselli, Apr 29 2019

A155040 A symmetric (1,-1)-triangle.

Original entry on oeis.org

1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1
Offset: 0

Views

Author

Paul Barry, Jan 19 2009

Keywords

Comments

Row sums are A007877(n+1). Diagonal sums are A155041.

Examples

			Triangle begins
.1,
.1, 1,
.1, -1, 1,
.1, -1, -1, 1,
.1, -1, 1, -1, 1,
.1, -1, 1, 1, -1, 1,
.1, -1, 1, -1, 1, -1, 1,
.1, -1, 1, -1, -1, 1, -1, 1,
.1, -1, 1, -1, 1, -1, 1, -1, 1,
.1, -1, 1, -1, 1, 1, -1, 1, -1, 1,
.1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1,
.1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1
		

Formula

Number triangle T(n,k)=sum{j=0..n, [j<=k]*[j<=n-k]*(-1)*(((-1)^(j+1)-0^(j+1))-((-1)^j-0^j))}.

A164360 Period 3: repeat [5, 4, 3].

Original entry on oeis.org

5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3
Offset: 0

Views

Author

Stephen Crowley, Aug 14 2009

Keywords

Comments

From Klaus Brockhaus, May 29 2010: (Start)
Continued fraction expansion of (32+sqrt(1297))/13.
Decimal expansion of 181/333. (End)

Crossrefs

Cf. A007877 (repeat 0,1,2,1), A068073 (repeat 1,2,3,2), A028356 (repeat 1,2,3,4,3,2), A130784 (repeat 1,3,2), A158289 (repeat 0,1,2,3,4,5,6,7,8,9,8,7,6,5,4,3,2,1).
Cf. A178566 (decimal expansion of (32+sqrt(1297))/13). [Klaus Brockhaus, May 29 2010]

Programs

Formula

a(n) = 4+(-1)^n*((1/2+I*sqrt(3)/6)*((1+I*sqrt(3))/2)^n+(1/2-I*sqrt(3)/6)*((1-I*sqrt(3))/2)^n). [Corrected by Klaus Brockhaus, Sep 17 2009]
a(n) = 4+(1/3)*sqrt(3)*sin(2*n*Pi/3)+cos(2*n*Pi/3). [Corrected by Klaus Brockhaus, Sep 17 2009]
a(n) = a(n-3) for n > 2, with a(0) = 5, a(1) = 4, a(2) = 3.
G.f.: (5+4*x+3*x^2)/((1-x)*(1+x+x^2)). [Klaus Brockhaus, Sep 17 2009]
E.g.f.: 4*exp(x)+(1/3)*sqrt(3)*exp(-(1/2)*x)*sin((1/2)*x*sqrt(3))+exp(-(1/2)*x)*cos((1/2)*x*sqrt(3)).
a(n) = 4 + A057078(n). - Wesley Ivan Hurt, Jul 01 2016

Extensions

Edited by Klaus Brockhaus, Sep 17 2009
Offset changed to 0 and formulas adjusted by Klaus Brockhaus, May 18 2010
Previous Showing 11-20 of 24 results. Next