cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 1118 results. Next

A086486 Numbers k such that the sum of the distinct prime divisors divides rad(k)=A007947(k).

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 30, 31, 32, 37, 41, 43, 47, 49, 53, 59, 60, 61, 64, 67, 70, 71, 73, 79, 81, 83, 89, 90, 97, 101, 103, 105, 107, 109, 113, 120, 121, 125, 127, 128, 131, 137, 139, 140, 149, 150, 151, 157, 163, 167
Offset: 1

Views

Author

Amarnath Murthy, Jul 28 2003

Keywords

Comments

Every prime power is a member.
Numbers with exactly two distinct prime divisors are not members of the sequence. - Victoria A Sapko (vsapko(AT)canes.gsw.edu), Sep 23 2003
Numbers k such that A008472(k) divides A007947(k).

Examples

			30 is a member. The prime divisors of 30 are 2, 3 and 5 and 2+3+5 = 10, divides 30.
84, however, is not a member because the sum of its distinct prime divisors (2+3+7=12) does not divide the product of its distinct prime divisors (2*3*7=42), even though 12 does divide 84. - _Harvey P. Dale_, Nov 26 2011, based on a comment from _Ray Chandler_
		

Crossrefs

Cf. A086487, A066031. A proper subset of A089352.

Programs

  • Mathematica
    sdpQ[n_]:=Module[{dpds=Transpose[FactorInteger[n]][[1]]}, Divisible[ Times@@dpds,Total[dpds]]]; Select[Range[2,200],sdpQ] (* Harvey P. Dale, Nov 26 2011 *)

Extensions

More terms from Victoria A Sapko (vsapko(AT)canes.gsw.edu), Sep 23 2003
Edited by Franz Vrabec, Sep 03 2005

A143700 a(n) is the least odd number m minimizing A007947(m*(2^n-m)).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 3, 13, 169, 25, 243, 375, 11, 49, 7, 3, 18225, 71875, 4913, 1701, 144027, 1825, 3483, 2197, 9156027, 131989, 1103, 5103, 38525, 458703, 1523, 3483891, 19283525
Offset: 1

Views

Author

Artur Jasinski, Nov 10 2008

Keywords

Comments

Smallest odd number a(n) such that product of distinct prime divisors of (2^n)*a(n)*(2^n - a(n)) is the smallest available for a(n) <= 2^x - a(n) < 2^x.
Product of distinct prime divisors of (2^n)*a(n)*(2^n - a(n)) is also called radical: rad((2^n)*a(n)*(2^n - a(n))).
For numbers 2^n - a(n) see A143701.
For minimal values of rad((2^n)*a(n)*(2^n - a(n))) see A143702.
Related to the abc conjecture. - M. F. Hasler, Nov 13 2008

Crossrefs

Programs

  • Mathematica
    a = {{1, 1}}; aa = {1}; bb = {}; rr = {}; Do[logmax = 0; k = 2^x; w = Floor[(k - 1)/2]; Do[m = FactorInteger[n (k - n)]; rad = 1; Do[rad = rad m[[s]][[1]], {s, 1, Length[m]}]; log = Log[k]/Log[rad]; If[log > logmax, bmin = k - n; amax = n; logmax = log; r = rad], {n, 1, w, 2}]; Print[{x, amax}]; AppendTo[aa, amax]; AppendTo[bb, bmin]; AppendTo[rr, r]; AppendTo[a, {x, logmax}], {x, 2, 15}]; aa (* Artur Jasinski with assistance of M. F. Hasler *)
  • PARI
    A143700(n) = {my(b=1, m=2^n-b); forstep(a=3, 2^(n-1), 2, A007947(a)*A007947(2^n-a)A007947((2^n-a)*b=a)); b; } \\ M. F. Hasler, Nov 13 2008

Extensions

a(28)-a(33) from M. F. Hasler, Nov 13 2008

A255334 Numbers n for which there exists k > n such that A000203(k) = A000203(n) and A007947(k) = A007947(n), where A000203 gives the sum of divisors, and A007947 gives the squarefree kernel of n.

Original entry on oeis.org

1512, 7560, 16632, 19656, 25704, 28728, 34776, 37800, 43848, 44928, 46872, 55944, 61992, 65016, 71064, 80136, 83160, 89208, 92232, 98280, 101304, 107352, 110376, 119448, 125496, 128520, 134568, 143640, 146664, 152712, 155736, 161784, 164808, 170856, 173880, 182952, 189000, 192024, 198072, 207144, 210168, 216216
Offset: 1

Views

Author

Antti Karttunen, Mar 23 2015

Keywords

Comments

None of the terms are squarefree, because if there were such x, then we would have rad(x) = x, and for any value k > x such that rad(k) = x we would have k = y*x, for some strictly positive integer y, and in that case sigma(k) > sigma(x). Thus all terms are members of sequence A013929.
None of the terms in range a(1) .. a(6589) occur in A255335. Are the sequences disjoint forever?

Crossrefs

Subsequence of A013929.
Cf. also A255423 (gives the corresponding k), A255335 (same sequence sorted into ascending order, with duplicates removed), A255412 [gives sigma(a(n))], A255424 [gives rad(a(n))], A255425, A254035, A254791.

Programs

  • PARI
    A007947(n) = factorback(factorint(n)[, 1]); \\ Andrew Lelechenko, May 09 2014
    isA255334(n) = { my(r=A007947(n), s=sigma(n), k=n+r); while(kA007947(k) == r), return(1), k = k+r)); return(0); };
    i=0; for(n=1, 2^25, if(isA255334(n), i++; write("b255334.txt", i, " ", n)))
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library. Quite naive and slow implementation.
    (define A255334 (MATCHING-POS 1 1 isA255334?))
    (define (isA255334? n) (let ((sig_n (A000203 n)) (rad_n (A007947 n))) (let loop ((try (+ n rad_n))) (cond ((>= try sig_n) #f) ((and (= sig_n (A000203 try)) (= rad_n (A007947 try))) #t) (else (loop (+ try rad_n)))))))

Formula

a(n) = A255424(n) * A255425(n).

A336550 Numbers k such that A007947(k) divides sigma(k) and A003557(k)-1 either divides A326143(k) [= A001065(k) - A007947(k)], or both are zero.

Original entry on oeis.org

6, 24, 28, 96, 120, 234, 384, 496, 936, 1536, 1638, 6144, 8128, 24576, 42588, 98304, 393216, 1089270, 1572864, 6291456, 25165824, 33550336, 100663296, 115048440, 402653184, 1185125760, 1610612736
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2020

Keywords

Comments

Numbers k such that gcd(sigma(k)-A007947(k), A007947(k)) == A007947(k) are those in A175200. These are equal to k such that gcd(A326143(k), A007947(k)) = gcd(sigma(k)-A007947(k)-k, A007947(k)) are equal to A007947(k).
Sequence is infinite because all numbers of the form 6*4^n (A002023) are present.
Question: Are there any odd terms?

Crossrefs

Intersection of A175200 and A336552.
Cf. A000396, A002023, A326145 (subsequences).
Cf. also A336641 for a similar construction.

Programs

  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    isA336550(n) = { my(r=A007947(n), s=sigma(n), u=((n/r)-1)); (!(s%r) && (gcd(u,(s-r-n))==u)); };

A360765 Numbers k that are neither prime powers nor squarefree, such that A007947(k) * A053669(k) < k.

Original entry on oeis.org

36, 40, 45, 48, 50, 54, 56, 63, 72, 75, 80, 88, 96, 98, 99, 100, 104, 108, 112, 117, 135, 136, 144, 147, 152, 153, 160, 162, 171, 175, 176, 184, 189, 192, 196, 200, 207, 208, 216, 224, 225, 232, 240, 242, 245, 248, 250, 252, 261, 270, 272, 275, 279, 280, 288, 294, 296, 297, 300, 304, 315, 320, 324, 325
Offset: 1

Views

Author

Michael De Vlieger, Mar 05 2023

Keywords

Comments

Let rad(k) = A007947(k), and let q = A053669(k).
Let j = A007947(k)*A053669(k) = rad(k)*q.
Composite prime powers p^e such that e > 1 and p^e > 4 have the property j < k. With rad(p^e) = p, in the case of p = 2, pq = 6, 6 < 2^e for e > 2. In the case of odd p, we have 2p < p^e for e > 1.
Squarefree k do not have this property, since rad(k) = k, thus, kq > k by definition of prime q.
For k in this sequence, omega(j) > omega(k), but Omega(j) <= Omega(k), where omega(n) = A001221(n), and Omega(n) = A001222(n).
Subset of A126706.

Examples

			k = 12 is not in the sequence since rad(k)*q(k) = 6*5 = 30, and 30 exceeds k. 18 and 24 are also not in the sequence for the same reason.
k = 36 is in the sequence since rad(36)*q(36) = 6*5 = 30, and 30 < 36.
k = 45 is in the sequence since rad(45)*q(45) = 15*2 = 30, and 30 < 45.
		

Crossrefs

Programs

  • Mathematica
    rad[n_] := rad[n] = Times @@ FactorInteger[n][[All, 1]];
    q[n_] := If[OddQ[n], 2, p = 2; While[Divisible[n, p], p = NextPrime[p]]; p];
    Select[Select[Range[325], Nor[PrimePowerQ[#], SquareFreeQ[#]] &], rad[#]*q[#] < # &] (* Michael De Vlieger, Mar 05 2023 *)

A379552 Number of pairs (d, k/d), d < k/d, such that d|k, rad(d) = rad(k/d) = rad(k), but d|k/d, for k = A376936(n), where rad = A007947.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 2, 2, 1, 2, 1, 1, 2, 3, 4, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 4, 4, 3, 1, 1, 3, 1, 1, 1, 2, 3, 1, 1, 2, 2, 4, 1, 2, 1, 3, 4, 1, 2, 6, 1, 3, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 4, 2, 2, 1, 2, 3, 1, 4, 2, 1, 1, 2, 1, 1, 3, 4
Offset: 1

Views

Author

Michael De Vlieger, Dec 25 2024

Keywords

Comments

In other words, one half the number of coreful complementary divisor pairs (d, k/d), d|k, that do not divide one another, for k in A376936, the sequence of numbers k that have at least 1 such pair.
Divisors d and k/d are both composite, further, are neither squarefree nor prime powers, hence in A126706.

Examples

			Let b(n) = A376936(n) and define property Q pertaining to (d, k/d), d|k, to be rad(d) = rad(k/d) = rad(k) but neither d | k/d nor k/d | d. Examples below show only (d, k/d) that have property Q:
a(1) = 1 since b(1) = 216 = 12*18.
a(2) = 1 since b(2) = 432 = 18*24.
a(3) = 1 since b(3) = 648 = 12*54.
a(4) = 2 since b(4) = 864 = 18*48 = 24*36.
a(14) = 3 since b(14) = 3456 = 18*192 = 36*96 = 48*72.
a(22) = 4 since b(22) = 7776 = 24*324 = 48*162 = 54*144 = 72*108, etc.
		

Crossrefs

Programs

  • Mathematica
    nn = 2^16;
    rad[x_] := Times @@ FactorInteger[x][[All, 1]];
    s = Union@ Select[Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}],
      Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &];
    Table[k = s[[n]];
      Count[Transpose@ {#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2] ]] &@ Divisors[k],
        _?(And[1 < GCD @@ {##},
           rad[#1] == rad[#2],
           Mod[#1, #2] != 0,
           Mod[#2, #1] != 0] & @@ # &)], {n, Length[s]}]

A062760 a(n) is n divided by the largest power of the squarefree kernel of n (A007947) which divides it.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 3, 1, 1, 8, 1, 5, 1, 2, 1, 9, 1, 4, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 5, 2, 1, 1, 1, 8, 1, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 16, 1, 7, 3, 1, 1, 1, 1, 4
Offset: 1

Views

Author

Labos Elemer, Jul 16 2001

Keywords

Comments

a(n) divides A003557 but is not equal to it.
a(n) is least d such that the prime power exponents of n/d are all equal; see also A066636. - David James Sycamore, Jun 13 2024

Examples

			n=1800: the squarefree kernel is 2*3*5 = 30 and 900 = 30^2 divides n, a(1800) = 2, the quotient of 1800/900.
		

Crossrefs

Cf. A059404 (n such that a(n)>1), A072774 (n such that a(n)=1).
Cf. A066636.

Programs

  • Maple
    f:= proc(n) local F,m,t;
      F:= ifactors(n)[2];
      m:= min(seq(t[2],t=F));
      mul(t[1]^(t[2]-m),t=F)
    end proc:
    map(f, [$1..200]); # Robert Israel, Nov 03 2017
  • Mathematica
    {1}~Join~Table[n/#^IntegerExponent[n, #] &@ Last@ Select[Divisors@ n, SquareFreeQ], {n, 2, 104}] (* Michael De Vlieger, Nov 02 2017 *)
    a[n_] := Module[{f = FactorInteger[n], e}, e = Min[f[[;; , 2]]]; f[[;; , 2]] -= e; Times @@ Power @@@ f]; Array[a, 100] (* Amiram Eldar, Feb 12 2023 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]); \\ Andrew Lelechenko, May 09 2014
    A051904(n) = if(1==n,0,vecmin(factor(n)[, 2])); \\ After Charles R Greathouse IV's code
    A062760(n) = n/(A007947(n)^A051904(n)); \\ Antti Karttunen, Sep 23 2017

Formula

a(n) = n/(A007947(n)^A051904(n)).
a(n) = n/A062759(n). - Amiram Eldar, Feb 12 2023

A078325 Squarefree numbers of the form m*rad(m)+1, where rad = A007947 (squarefree kernel).

Original entry on oeis.org

2, 5, 10, 17, 26, 33, 37, 65, 73, 82, 101, 109, 122, 129, 145, 170, 197, 201, 217, 226, 257, 290, 362, 393, 401, 433, 442, 485, 501, 530, 577, 626, 649, 677, 730, 785, 842, 865, 901, 962, 969, 973, 1001, 1090, 1126, 1153, 1157, 1226, 1297, 1353, 1370, 1373
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Crossrefs

Intersection of A005117 and A224866.

Programs

  • Haskell
    a078325 n = a078325_list !! (n-1)
    a078325_list = filter ((== 1) . a008966) a224866_list
    -- Reinhard Zumkeller, Jul 23 2013
    
  • Mathematica
    powQ[n_] := n == 1 || AllTrue[FactorInteger[n][[;; , 2]], # > 1 &]; Select[Range[1400], SquareFreeQ[#] && powQ[# - 1] &] (* Amiram Eldar, Jul 31 2022 *)
  • PARI
    is(n) = n>1 && issquarefree(n) && ispowerful(n-1); \\ Amiram Eldar, Jul 31 2022

A285329 a(n) = A013928(A007947(n)).

Original entry on oeis.org

0, 1, 2, 1, 3, 4, 5, 1, 2, 6, 7, 4, 8, 9, 10, 1, 11, 4, 12, 6, 13, 14, 15, 4, 3, 16, 2, 9, 17, 18, 19, 1, 20, 21, 22, 4, 23, 24, 25, 6, 26, 27, 28, 14, 10, 29, 30, 4, 5, 6, 31, 16, 32, 4, 33, 9, 34, 35, 36, 18, 37, 38, 13, 1, 39, 40, 41, 21, 42, 43, 44, 4, 45, 46, 10, 24, 47, 48, 49, 6, 2, 50, 51, 27, 52, 53, 54, 14, 55, 18, 56, 29, 57, 58, 59, 4, 60, 9, 20, 6
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2017

Keywords

Comments

For n > 1, a(n) gives the (one-based) index of the column where n is located in array A284311, or respectively, index of the row where n is in A284457. A008479 gives the other index.

Crossrefs

Cf. A008479 (the other index).
Cf. array A284311 (A284457).

Programs

  • Python
    from operator import mul
    from sympy import primefactors
    from sympy.ntheory.factor_ import core
    from functools import reduce
    def a007947(n): return 1 if n<2 else reduce(mul, primefactors(n))
    def a013928(n): return sum(1 for i in range(1, n) if core(i) == i)
    print([a013928(a007947(n)) for n in range(1, 101)]) # Indranil Ghosh, Apr 18 2017
    
  • Python
    from math import prod, isqrt
    from sympy import primefactors, mobius
    def A285329(n):
        m=prod(primefactors(n))-1
        return sum(mobius(k)*(m//k**2) for k in range(1,isqrt(m)+1)) # Chai Wah Wu, May 12 2024

Formula

a(n) = A013928(A007947(n)).
Other identities. For all n >= 0:
If A008683(n) <> 0 [when n is squarefree, A005117], a(n) = A013928(n), otherwise a(n) = a(A285328(n)).
a(A019565(n)) = A064273(n).

A325126 a(1) = 1; a(n) = -Sum_{d|n, dA007947.

Original entry on oeis.org

1, -2, -3, 2, -5, 6, -7, -2, 6, 10, -11, -6, -13, 14, 15, 2, -17, -12, -19, -10, 21, 22, -23, 6, 20, 26, -12, -14, -29, -30, -31, -2, 33, 34, 35, 12, -37, 38, 39, 10, -41, -42, -43, -22, -30, 46, -47, -6, 42, -40, 51, -26, -53, 24, 55, 14, 57, 58, -59, 30
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 04 2019

Keywords

Comments

Dirichlet inverse of A007947.
Moebius transform of A125131.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, n, -Sum[If[d < n, Last[Select[Divisors[n/d], SquareFreeQ]] a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 60}]
    f[p_, e_] := -p*(1 - p)^(e - 1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 14 2020 *)
  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    lista(nn) = {my(va=vector(nn)); va[1] = 1; for (n=2, nn, va[n] = -sumdiv(n, d, if (dMichel Marcus, Jun 01 2020

Formula

G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} rad(k) * A(x^k).
From Isaac Saffold, May 30 2020: (Start)
a(n) = A008836(n)*A326297(n)*A007947(n).
Proof:
Define lambda(n) := A008836(n); h(n) := A326297(n); rad(n) := A007947(n).
As lambda(n), h(n), and rad(n) are multiplicative, the identity needs only to be proved for prime power n.
It is clear that the identity holds for n = 1 = p^0. For a given nonnegative integer k, assume the identity holds for all v such that 0 <= v <= k. Then, by the recursive formula for Dirichlet inverses,
a(p^(k+1)) = -Sum_{v=0..k} lambda(p^v)*h(p^v)*rad(p^v)*rad(p^(k+1-v))
= -p * (1 + p*Sum_{v=1..k}((-1)^v * (p-1)^(v-1)))
= -p * (1 - p*Sum_{v=0..(k-1)}((1 - p)^v))
= -p * (1 - p*(((1-p)^k - 1) / -p))
= -p * (1-p)^k
= (-1)^(k+1) * (p-1)^k * p
= lambda(p^(k+1)) * h(p^(k+1)) * rad(p^(k+1))
Thus the identity holds for p^(k+1), k >= 0.
As k is arbitrary and the identity holds for p^0, it holds for the prime powers, and thus for all positive integers. Q.E.D. (End)
Previous Showing 21-30 of 1118 results. Next